Spill Prevention, Control and Countermeasure (SPCC) Plan

John C. Tune Airport
110 Tune Airport Drive
Nashville, Tennessee

January 2018

www.erm.com
John C. Tune Airport

Spill Prevention, Control and Countermeasure (SPCC) Plan

January 2018

Project No. 0435832

Stephanie J. Nicolson
Partner in Charge

Lisa Hutchings
Project Scientist

Environmental Resources Management
5000 Meridian Blvd, Suite 300
Nashville, TN 37067
T: 615-656-7101
F: 615-807-3079

www.erm.com
TABLE OF CONTENTS

1.0 FOREWORD 1-1

2.0 REGULATORY INTRODUCTION 2-1

3.0 CERTIFICATIONS AND MANAGEMENT APPROVAL 3-1

3.1 PROFESSIONAL ENGINEER’S CERTIFICATION [112.3(d)] 3-1

3.2 DOCUMENTATION OF PLAN REVIEW AND EVALUATION [112.5] 3-3

3.3 MANAGEMENT APPROVAL [112.7] 3-4

3.4 CERTIFICATION OF THE APPLICABILITY OF THE SUBSTANTIAL HARM CRITERIA [ATTACHMENT C-II TO APPENDIX C OF 40 CFR PART 112] 3-5

3.4.1 The Substantial Harm Criteria 3-5

3.5 PLAN REVIEW AND AMENDMENT [112.5] 3-7

3.5.1 Plan Amendment [112.5(a)] 3-7

3.5.2 Periodic Review and Evaluation [112.5(b)] 3-7

3.5.3 Professional Engineer Certification of Technical Amendments [112.5(c)] 3-7

3.6 GENERAL PLAN REQUIREMENTS [112.7] 3-8

3.6.1 SPCC Plan Preparation 3-8

3.6.2 Management Approval 3-8

3.6.3 Plan Sequence 3-8

3.6.4 Future Implementation 3-8

3.7 CONFORMANCE WITH PLAN REQUIREMENTS [112.7(a)(1), 112.8(a)] 3-10

3.8 DEVIATIONS FROM PLAN REQUIREMENTS [112.7(a)(2)] 3-10

4.0 FACILITY INFORMATION 4-1

4.1 DETAILED SUMMARY 4-1

4.2 FACILITY OPERATIONS, DESCRIPTION, AND LAYOUT [112.7(a)(3)] 4-2

4.3 FACILITY OIL STORAGE [112.7(a)(3)(I)] 4-2
4.4 FACILITY DISCHARGE PREVENTION MEASURES [112.7(a)(3)(ii)] 4-3

4.5 FACILITY DISCHARGE AND DRAINAGE CONTROLS [112.7(a)(3)(iii)] 4-4

4.6 FACILITY DISCHARGE COUNTERMEASURES [112.7(a)(3)(iv)] 4-4

5.0 DISCHARGE RESPONSE 5-1

5.1 EMERGENCY CONTACTS [112.7(a)(3)(vi)] 5-1
5.1.1 Facility Contacts 5-1
5.1.2 Discharge Notification 5-1
5.1.3 State and Local Emergency Response Agencies 5-1
5.1.4 Available Spill Response Contractors 5-2

5.2 DISCHARGE RESPONSE PROCEDURES [112.7(a)(5)] 5-2

5.3 DISCHARGE NOTIFICATION 5-4
5.3.1 Oral Notifications [112.7(a)(4)] 5-5
5.3.2 Written Notifications [112.4(a), 112.4(c)] 5-6

5.4 DISPOSAL OF RECOVERED MATERIALS [112.7(a)(3)(v)] 5-7

5.5 FACILITY RESPONSE PLAN [112.20] 5-7

6.0 POTENTIAL DISCHARGE PREDICTIONS [112.7(b)] 6-1

7.0 DISCHARGE PREVENTION MEASURES, CONTROLS, AND COUNTERMEASURES 7-1

7.1 CONTAINMENT SYSTEMS, DIVERSIONARY STRUCTURES, AND SPILL EQUIPMENT [112.7(c)] 7-1

7.2 CONTINGENCY PLANNING [112.7(d)] 7-1

7.3 INSPECTIONS, TESTS, AND RECORDS [112.7(e)] 7-2

7.4 PERSONNEL, TRAINING, AND DISCHARGE PREVENTION PROCEDURES [112.7(f)] 7-2
7.4.1 Personnel Training [112.7(f)(1)] 7-2
7.4.2 Designated Person Accountable for Discharge Prevention [112.7(f)(2)] 7-3
7.4.3 Discharge Prevention Briefings [112.7(f)(3)] 7-3

7.5 SECURITY [112.7(g)] 7-3
7.5.1 Fencing 7-3
7.5.2 Valves
7.5.3 Pumps
7.5.4 Capping or Blank-Flange Piping
7.5.5 Lighting

7.6 FACILITY TANK CAR AND TANK TRUCK LOADING / UNLOADING [112.7(h)]
7.6.1 Truck Loading/Unloading Operations [40 CFR 112.7(h)(1)]
7.6.2 Warning Light or Physical Barrier System [40 CFR 112.7(h)(2)]
7.6.3 Inspection of Lowermost Drainage Outlets [40 CFR 112.7(h)(3)]

7.7 BRITTLE FRACTURE EVALUATION [112.7(i)]

7.8 STATE DISCHARGE PREVENTION REQUIREMENTS [112.7(j)]

7.9 QUALIFIED OIL-FILLED OPERATIONAL EQUIPMENT [40 CFR 112.7(k)]

7.10 FACILITY DRAINAGE [112.8(b)]
7.10.1 Drainage from Diked Storage Areas [112.8(b)(1) & (2)]
7.10.2 Design of Facility Drainage Systems [112.8(b)(3)]

7.11 BULK STORAGE CONTAINERS [112.8(c)]
7.11.1 Container Compatibility with Contents and Storage Conditions [112.8(c)(1)]
7.11.2 Secondary Containment [112.8(c)(2)]
7.11.3 Drainage of Uncontaminated Rainwater from Diked Areas [112.8(c)(3)]
7.11.4 Corrosion Protection of Completely Buried Metallic Storage Tanks [112.8(c)(4)]
7.11.5 Corrosion Protection of Partially Buried or Bunkered Metallic Tanks [112.8(c)(5)]
7.11.6 Aboveground Container Periodic Integrity Testing [112.8(c)(6)]
7.11.7 Leakage Through Defective Internal Heating Coils [112.8(c)(7)]
7.11.8 Good Engineering Practice of Bulk Storage Containers [112.8(c)(8)]
7.11.9 Observation of Effluent Treatment Facilities [112.8(c)(9)]
7.11.10 Correction of Visible Discharges [112.8(c)(10)]
7.11.11 Position of Mobile or Portable Oil Storage Containers [112.8(c)(11)]

7.12 FACILITY TRANSFER OPERATIONS, PUMPING, AND FACILITY PROCESSES [112.8(d)]
7.12.1 Protection of Buried Piping [112.8(d)(1)]
7.12.2 Terminal Connections [112.8(d)(2)]
7.12.3 Design of Pipe Supports [112.8(d)(3)]
7.12.4 Inspection of Aboveground Valves, Piping, and Appurtenances
[112.8(d)(4)] 7-12
7.12.5 Protection of Aboveground Piping and Other Transfer Operations
from Vehicular Traffic [112.8(d)(5)] 7-12

8.0 SPCC IMPLEMENTATION 8-1

LIST OF APPENDICES

A APPLICABLE REGULATIONS
B ADMINISTRATIVE PLAN UPDATES
C DISCHARGE REPORTS
D INSPECTION RECORDS
E PERSONNEL TRAINING RECORDS

LIST OF TABLES

3-1 SPCC Plan Certifications 3-2
3-2 SPCC Plan Periodic Reviews Requiring Amendment 3-3
3-3 SPCC Plan Periodic Reviews not requiring Amendment 3-3
3-4 Locations of SPCC Plan Requirements within This Plan 3-9
4-1 Facility Oil Storage Capacity 4-3
5-1 Spill Notification Contacts 5-1
5-2 Discharge Notification Requirements 5-4
6-1 Potential Discharge Predictions / Secondary Containment
for JWN Controlled Bulk Storage Containers 6-1
8-1 SPCC Action Schedule 8-1

LIST OF FIGURES

4-1 Site Location Map following page 4-2
4-2 JWN Facility Drawing following page 4-3
The Metropolitan Nashville Airport Authority (MNAA) owns and operates the John C. Tune Airport (JWN), which is located within Davidson County as illustrated in Figure 4-1. JWN is a general aviation reliever airport in West Nashville that accommodates primarily general aviation. The airport has a single runway, with aviation support structures consisting of 125 executive type T-hangars, three larger hangars, aircraft parking and apron space, a terminal building, and fuel storage facilities. Corporate Flight Management (CFM) dba Contour Aviation is a fixed-base operator (FBO) which operates at the Airport.

The JWN Airport is subject to the provisions of 40 CFR 112 and must develop and implement a Spill Prevention, Control, and Countermeasure (SPCC) Plan because it has non-transportation related aboveground oil-product storage facilities with a capacity exceeding 1,320 gallons, and because a discharge from the facility could potentially reach waters of the United States. The SPCC program was implemented by the US Environmental Protection Agency (U.S. EPA) under the authority of the Clean Water Act (CWA), Section 311. SPCC plans focus on procedures to prevent and control oil spills. The required format and contents of such a plan are outlined in 40 CFR 112.7(a) through (e). This Plan has been carefully thought-out and prepared in accordance with good engineering practices and with the full approval of CFM dba Contour Aviation and JWN.

This SPCC Plan establishes practices, procedures, methods, and other requirements for equipment to prevent the discharge of oil into the navigable waters of the United States. This policy is achieved through facility design, engineering, operating procedures that minimize spill potential, and regular inspections and maintenance for leak detection and repair. In the event of a spill, rapid spill reporting, response, containment, and cleanup is conducted to minimize adverse environmental effects. Contaminated materials are disposed of in accordance with federal, state and local requirements.

In addition, JWN does not satisfy the criteria for being a facility with the potential to cause substantial harm to the environment, and therefore does not require the development and implementation of a Facility Response Plan. The appropriate certification to 40 CFR Part 112 is included in Section 3.4 - Applicability of the Substantial Harm Criteria.
Copies of regulations applicable to oil spill prevention, control, countermeasure, and reporting are presented in Appendix A. The SPCC requirements are addressed in the following sections of this document and listed in Table 3-4.
Section 311(j)(l)(C) of the Clean Water Act required that regulations be issued to establish procedures, methods, equipment, and other requirements to prevent discharges of oil from vessels and facilities and to contain such discharges. These regulations were promulgated by the United States Environmental Protection Agency (EPA) and are found in 40 CFR Part 112, Oil Pollution Prevention and became effective on January 10, 1974. The EPA promulgated revised 40 CFR 112 regulations on July 17, 2002 and amended on February 17, 2006. On December 26, 2006, the EPA issued another rule amendment which provides streamlined, alternative methods for compliance with oil spill prevention requirements for (1) facilities with an oil storage capacity of 10,000 gallons or less (“qualified facilities”); (2) oil-filled operational equipment; and (3) mobile refuelers. On November 5, 2009, the EPA promulgated some additional amendments which are effective January 14, 2010. On June 19, 2009, the EPA promulgated an extension for the amendment and implementation of SPCC plans. Under these revised rules, SPCC Plans must be amended, certified, and implemented by November 10, 2010.

40 CFR 112 requires the preparation and implementation of a Spill Prevention, Control, and Countermeasure (SPCC) Plan to address the prevention of discharges of oil.

JWN must prepare and implement an SPCC Plan because it meets the requirements listed in 40 CFR Part 112 (refer to Section 3.6.1).
3.0 CERTIFICATIONS AND MANAGEMENT APPROVAL

3.1 PROFESSIONAL ENGINEER’S CERTIFICATION [112.3(d)]

I hereby certify that I am familiar with the requirements of 40 CFR Part 112 and that my agent, Lisa Hutchings, has visited and examined the JWN facility located in Davidson County, Nashville, Tennessee. I also certify that this Spill Prevention, Control, and Countermeasure Plan has been prepared in accordance with good engineering practices, including consideration of applicable industry standards, and with the requirements of 40 CFR Part 112. Furthermore, I certify that procedures for required inspections and testing have been established and that the Spill Prevention, Control, and Countermeasure Plan are adequate for the facilities under direct control of JWN.

Such certification shall in no way relieve JWN of the duty to prepare and fully implement the Spill Prevention, Control, and Countermeasure Plan in accordance with the requirements of 40 CFR Part 112.

By: ________________________________
Jeffrey H. Twaddle, P.E.
Tennessee P.E. No. 22962

Date: ____________
1/5/2018
<table>
<thead>
<tr>
<th>No.</th>
<th>By</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Environmental Resources Management</td>
<td>9/1992</td>
<td>Initial Plan</td>
</tr>
<tr>
<td>1</td>
<td>Environmental Resources Management</td>
<td>9/1995</td>
<td>Plan Revision</td>
</tr>
<tr>
<td>2</td>
<td>John K. Boren, P.E.</td>
<td>12/2000</td>
<td>Update</td>
</tr>
<tr>
<td>5</td>
<td>Jeffrey H. Twaddle, P.E.</td>
<td>9/2007</td>
<td>Recertification – Technical Amendments (Installation of 1,000 gal Self-service tank)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change Title for Ken Whatley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Update of Table 3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Addition of TPM as Spill Response Contractor in Section 5.1.4</td>
</tr>
<tr>
<td>7</td>
<td>Jeffrey H. Twaddle, P.E.</td>
<td>1/2018</td>
<td>Recertification/5-Year Review – 40CFR112 Revisions Administrative Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Update Facility Response Coordinator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Update Management Approval</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Update Table 4-1 and Table 6-1 for mobile tanker truck volumes and used oil drum volumes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Update Figure 4-2</td>
</tr>
</tbody>
</table>
Table 3-2 SPCC Plan Periodic Reviews Requiring Amendment

I have completed review and evaluation of the SPCC Plan for the JWN facility located in Davidson County, Nashville, Tennessee, on the date listed below and will amend the Plan as a result.

<table>
<thead>
<tr>
<th>No.</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3-3 SPCC Plan Periodic Reviews not Requiring Amendment

I have completed review and evaluation of the SPCC Plan for the JWN facility located in Davidson County; Nashville, Tennessee on the date listed below and will not amend the Plan as a result.

<table>
<thead>
<tr>
<th>No.</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 MANAGEMENT APPROVAL [112.7]

JWN is committed to the prevention of discharges of oil to navigable waters and the environment from our facility located in Davidson County, Nashville, Tennessee. As a part of this commitment, JWN will provide the necessary resources to fully implement this Spill Prevention, Control, and Countermeasure Plan. JWN maintains the highest standards for discharge prevention, control, and countermeasures through regular review, updating, and implementation of this Plan.

By: [Signature]
Michelle J. Baker, P.E.
Asst. Manager, Environmental Compliance
Metropolitan Nashville Airport Authority
One Terminal Drive, Suite 501
Nashville, Tennessee 37214-4114

Date: 5·29·2018
3.4 CERTIFICATION OF THE APPLICABILITY OF THE SUBSTANTIAL HARM CRITERIA [Attachment C-II to Appendix C of 40 CFR Part 112]

3.4.1 The Substantial Harm Criteria

1. Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons? □ Yes □ No

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area? □ Yes □ No

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to Appendix C to 40 CFR Part 112 or a comparable formula1) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA’s “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see 40 CFR Part 112, Section 13, for availability and the applicable Area Contingency Plan. □ Yes □ No

4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to Appendix C to 40 CFR Part 112 or a comparable formula1) such that a discharge from the facility would shut down a public drinking water intake? □ Yes □ No

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil discharge in an amount greater than or equal to 10,000 gallons within the last five years? □ Yes □ No

1 If a comparable formula is used, documentation of the reliability and analytical soundness of the comparable formula must be attached to this form.
6. Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

By: [Signature]

Michelle J. Baker, P.E.
Asst. Manager, Environmental Compliance
Metropolitan Nashville Airport Authority
One Terminal Drive, Suite 501
Nashville, Tennessee 37214-4114

Date: 5.29.2018
3.5 PLAN REVIEW AND AMENDMENT [112.5]

3.5.1 Plan Amendment [112.5(a)]

This Plan must be amended when there is a change in the facility design, construction, operation, or maintenance that materially affects the facility’s potential for the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines. The amendment must be completed within six months and implemented as soon as possible but no later than six months following the preparation of the amendment.

3.5.2 Periodic Review and Evaluation [112.5(b)]

A review and evaluation of this Plan must be conducted at least once every five years from the original date of certification. As a result of this review and evaluation, the Plan must be amended within six months of the review to include more effective prevention and control technology if the technology has been field-proven at the time of review and will significantly reduce the likelihood of a discharge of oil into or upon the navigable waters of the United States or adjoining shorelines. The amendment must be implemented as soon as possible but no later than six months following the preparation of the amendment. Completion of the review and evaluation must be documented, and this documentation must include a signed statement indicating whether the Plan will be amended. Tables 3-2 and 3-3 in Section 3.2 will serve as the documentation for this review.

3.5.3 Professional Engineer Certification of Technical Amendments [112.5(c)]

If any technical amendments are made, they must be certified by a Professional Engineer in Section 3.1. Technical amendments materially affect a facility’s potential to discharge oil and require the application of good engineering practice. Some examples of non-technical amendments, which do not require P.E. certification may include:

- Changes to the contact list;
- More stringent requirements for storm water discharges to comply with National Pollutant Discharge Elimination System rules;
- Phone number changes; or
- Product changes if the new product is compatible with conditions in the existing tank and secondary containment.
Records of non-technical amendments will be maintained in Appendix B. If it cannot be determined whether an amendment is technical or non-technical, have the amended Plan certified by a Professional Engineer.

3.6 GENERAL PLAN REQUIREMENTS [112.7]

3.6.1 SPCC Plan Preparation

An SPCC Plan must be prepared for any facility subject to 40 CFR Part 112. JWN must prepare a Plan because it meets the following requirements:

- “It is a non-transportation-related onshore facility engaged in storing and using oil and oil products, which due to its location, could reasonably be expected to discharge oil in quantities that may be harmful, as described in 40 CFR Part 110, into or upon the navigable waters of the United States or adjoining shorelines.”

- “It has an aggregate aboveground storage capacity exceeding 1,320 gallons of oil, counting only containers of oil with a capacity of 55 gallons or greater.”

3.6.2 Management Approval

An SPCC Plan, which must be prepared in writing, must have the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan. A signed statement of approval for this Plan from JWN management is found in Section 3.3.

3.6.3 Plan Sequence

The sequence of an SPCC Plan must follow the sequence specified in 40 CFR 112.7. If this sequence is not followed, an equivalent Plan meeting all applicable requirements must be prepared, and a cross-reference must be provided. In general, this Plan follows the required sequence; however, there are some deviations. Table 3-4 provides the locations of applicable requirements within this Plan.

3.6.4 Future Implementation

If an SPCC Plan calls for procedures, methods, or equipment not yet fully operational or for additional facilities, these items must be discussed separately, and the discussion must explain the details of installation and operational startup.
<table>
<thead>
<tr>
<th>40 CFR 112 Citation</th>
<th>Description</th>
<th>Plan Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.3(d)</td>
<td>Professional Engineer’s Certification</td>
<td>3.1</td>
</tr>
<tr>
<td>112.4(a)</td>
<td>Written Notifications to EPA</td>
<td>5.3.2</td>
</tr>
<tr>
<td>112.4(c)</td>
<td>Written Notifications to States</td>
<td>5.3.2</td>
</tr>
<tr>
<td>112.5</td>
<td>Plan Review and Amendment</td>
<td>3.2, 3.5</td>
</tr>
<tr>
<td>112.7</td>
<td>General Plan Requirements Management Approval</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>112.7(a)(1)</td>
<td>Conformance with Plan Requirements</td>
<td>3.7</td>
</tr>
<tr>
<td>112.7(a)(2)</td>
<td>Deviations from Plan Requirements</td>
<td>3.8</td>
</tr>
<tr>
<td>112.7(a)(3)</td>
<td>Facility Layout and Diagram</td>
<td>4.2</td>
</tr>
<tr>
<td>112.7(a)(3)(a)(i)</td>
<td>Facility Oil Storage</td>
<td>4.3</td>
</tr>
<tr>
<td>112.7(a)(3)(a)(ii)</td>
<td>Facility Discharge Prevention Measures</td>
<td>4.4</td>
</tr>
<tr>
<td>112.7(a)(3)(a)(iii)</td>
<td>Facility Discharge and Drainage Controls</td>
<td>4.5</td>
</tr>
<tr>
<td>112.7(a)(3)(a)(iv)</td>
<td>Facility Discharge Countermeasures</td>
<td>4.6</td>
</tr>
<tr>
<td>112.7(a)(3)(a)(v)</td>
<td>Disposal of Recovered Materials</td>
<td>5.4</td>
</tr>
<tr>
<td>112.7(a)(3)(a)(vi)</td>
<td>Emergency Contacts</td>
<td>5.1</td>
</tr>
<tr>
<td>112.7(a)(4)</td>
<td>Requirements for Oral Discharge Reporting</td>
<td>5.3.1</td>
</tr>
<tr>
<td>112.7(a)(5)</td>
<td>Discharge Response Procedures</td>
<td>5.2</td>
</tr>
<tr>
<td>112.7(b)</td>
<td>Potential Discharge Predictions</td>
<td>6.0</td>
</tr>
<tr>
<td>112.7(c)</td>
<td>Containment Systems and Diversionary Structures</td>
<td>7.1</td>
</tr>
<tr>
<td>112.7(d)</td>
<td>Contingency Planning</td>
<td>7.2</td>
</tr>
<tr>
<td>112.7(e)</td>
<td>Inspections, Tests, and Records</td>
<td>7.3</td>
</tr>
<tr>
<td>112.7(f)</td>
<td>Personnel and Training Procedures</td>
<td>7.4</td>
</tr>
<tr>
<td>112.7(g)</td>
<td>Security</td>
<td>7.5</td>
</tr>
<tr>
<td>112.7(h)</td>
<td>Facility Loading/Unloading Rack</td>
<td>7.6</td>
</tr>
<tr>
<td>112.7(i)</td>
<td>Brittle Fracture Evaluation</td>
<td>7.7</td>
</tr>
<tr>
<td>112.7(j)</td>
<td>State Requirements</td>
<td>7.8</td>
</tr>
<tr>
<td>112.7(k)</td>
<td>Qualified Oil-filled Operational Equipment</td>
<td>7.9</td>
</tr>
<tr>
<td>112.8(a)</td>
<td>Conformance with Plan Requirements</td>
<td>3.7</td>
</tr>
<tr>
<td>112.8(b)</td>
<td>Facility Drainage</td>
<td>7.10</td>
</tr>
<tr>
<td>112.8(c)</td>
<td>Bulk Storage Containers</td>
<td>7.11</td>
</tr>
<tr>
<td>112.8(d)</td>
<td>Facility Transfer Operations</td>
<td>7.12</td>
</tr>
<tr>
<td>112.20</td>
<td>Facility Response Plans</td>
<td>5.5</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Substantial Harm Criteria</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Table 8-1 will document any future implementations which are required for compliance with 40 CFR 112.

3.7

CONFORMANCE WITH PLAN REQUIREMENTS [112.7(a)(1), 112.8(a)]

JWN conforms to all applicable requirements listed in 40 CFR Part 112, including those listed under Sections 112.7 and 112.8. This Plan and all actions taken in accordance with this Plan attest to JWN’s conformance.

3.8

DEVIATIONS FROM PLAN REQUIREMENTS [112.7(a)(2)]

JWN does not have any deviations from Plan requirements; therefore, this section is not applicable.
4.0 FACILITY INFORMATION

4.1 DETAILED SUMMARY

Facility: John C. Tune Airport
 110 Tune Airport Drive
 Nashville, Tennessee 37209

Location: 36° 10’ 45.9” N Latitude
 86° 53’ 01.4” W Longitude

Facility Owner/Operator: Metropolitan Nashville Airport Authority
 One Terminal Drive, Suite 501
 Nashville, TN 37214

Fixed Based Operator: Corporate Flight Management
dba Contour Aviation
 110 Tune Airport Drive
 Nashville, TN 37209

Facility Manager: Kathy Hatter

Facility SIC Code: 4581 - Airports, Flying Fields, and Airport Terminal Services

Emergency /Facility Response Coordinator: Mr. Matt Ostermann
 Telephone: (615) 350-5000
 Mobile: (516) 902-1566

Alternate Emergency Coordinator: Ms. Kathy Hatter
 Telephone: (615) 350-5000
 Mobile: (615) 347-4196

Nearest Surface Water Body: Unnamed tributary of Cumberland River (~400 yards)
4.2 **FACILITY OPERATIONS, DESCRIPTION, AND LAYOUT [112.7(a)(3)]**

The JWN facility location is shown in Figure 4-1, “Site Location Map”.

JWN, located in west Nashville in the Cockrill Bend area (see Figure 4-1), is a general aviation airport that serves the needs of regional corporate and private aircraft. JWN accommodated over 85,000 Landing and Takeoff (LTO) cycles in 2016, executed primarily by single engine piston aircraft.

Construction on JWN began in 1983 and the first aircraft accelerated down the runway in July of 1986. In addition to serving as a reliever airport for the Nashville International Airport, JWN provides pilot training and helicopter support. JWN is financially self-supporting, although some improvements are made with the assistance of state and federal grant money.

JWN consists of a terminal building, three hangars, 125 executive type T-hangars, and aircraft parking and apron space. The Airport operates with a single 6,000 ft. x 100 ft. runway (Runway 2-20) oriented approximately north-south. In addition, aircraft fuel is stored and distributed from a tank farm located just to the north of the terminal building.

4.3 **FACILITY OIL STORAGE [112.7(a)(3)(i)]**

The primary types of oil-products controlled by JWN that are subject to the SPCC regulations currently being stored, processed, or consumed include aviation fuel and waste oils.

The definition found in 40 CFR 112.2 for “Oil” is as follows:

“Oil” is defined as:

“Oil means oil of any kind or in any form, including, but not limited to: fats, oils, or greases of animal, fish, or marine mammal origin, vegetable oils, including oils from seeds, nuts, fruits, or kernels; and, other oils and greases, including petroleum, fuel oil, sludge, mineral oils, oil refuse, or oil mixed with wastes other than dredged spoil”
FIGURE 4-1
SITE LOCATION MAP
JOHN C TUNE AIRPORT SPCC
NASHVILLE, TENNESSEE

SOURCE: USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLE: SCOTTSBORO, TENNESSEE—1996.
Figure 4-2 shows the locations of the oil storage tanks at JWN. Table 4-1 lists the oil storage containers located at JWN.

Table 4-1

<table>
<thead>
<tr>
<th>Volume (gal)</th>
<th>Description</th>
<th>Estimated Annual Throughput</th>
<th>Location</th>
<th>Owner</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,000</td>
<td>Jet A aviation fuel “Middle Tank”</td>
<td>170,000 gal</td>
<td>Tank farm</td>
<td>MNAA</td>
<td>CFM</td>
</tr>
<tr>
<td>12,000</td>
<td>Jet A aviation Fuel “End Tank”</td>
<td>170,000 gal</td>
<td>Tank farm</td>
<td>MNAA</td>
<td>CFM</td>
</tr>
<tr>
<td>12,000</td>
<td>100LL Avgas aviation fuel</td>
<td>193,000 gal</td>
<td>Tank farm</td>
<td>MNAA</td>
<td>CFM</td>
</tr>
<tr>
<td>1,000</td>
<td>Self-Service 100LL Avgas aviation fuel</td>
<td></td>
<td>Next to Hangar 3</td>
<td>MNAA</td>
<td>CFM</td>
</tr>
<tr>
<td>250</td>
<td>Used Oil Tank</td>
<td>500 gal</td>
<td>North of Tank farm</td>
<td>MNAA</td>
<td>CFM</td>
</tr>
<tr>
<td>3,000</td>
<td>Mobile Tanker truck – Jet A #1</td>
<td>154 tanks</td>
<td>Mobile</td>
<td>Eastern Aviation</td>
<td>CFM</td>
</tr>
<tr>
<td>3,000</td>
<td>Mobile Tanker truck – Jet A #2</td>
<td>154 tanks</td>
<td>Mobile</td>
<td>Eastern Aviation</td>
<td>CFM</td>
</tr>
<tr>
<td>1,200</td>
<td>Mobile Tanker truck – Avgas</td>
<td>120 tanks</td>
<td>Mobile</td>
<td>Eastern Aviation</td>
<td>CFM</td>
</tr>
<tr>
<td>500</td>
<td>Gasoline</td>
<td></td>
<td>Tank Farm</td>
<td>MNAA</td>
<td>MNAA</td>
</tr>
<tr>
<td>500</td>
<td>Diesel</td>
<td></td>
<td>Tank Farm</td>
<td>MNAA</td>
<td>MNAA</td>
</tr>
<tr>
<td>200</td>
<td>Emergency Generator</td>
<td>Varies</td>
<td>East of the Terminal Bldg</td>
<td>MNAA</td>
<td>MNAA</td>
</tr>
<tr>
<td>110</td>
<td>Used Oil – Two 55-gal drums</td>
<td>Varies</td>
<td>Maintenance</td>
<td>CFM</td>
<td>CFM</td>
</tr>
</tbody>
</table>

45,760 gallons (Approximate Total Storage Capacity)

4.4

FACILITY DISCHARGE PREVENTION MEASURES [112.7(a)(3)(ii)]

JWN has provided adequate discharge prevention measures through the implementation of this Plan. All employees handling oil, and their supervisors, will be properly trained in the topics covered by this Plan.

This training is intended to reduce the likelihood of a discharge of oil. Routine inspections are conducted to prevent and/or discover discharges from bulk storage containers and piping. Security measures are in place to allow the discovery of any discharges and to deter vandalism that
might result in a discharge. Standard operating procedures are in place to minimize the accidental discharge during these processes, when loading or unloading oil tanks.

4.5 FACILITY DISCHARGE AND DRAINAGE CONTROLS [112.7(a)(3)(iii)]

JWN has provided adequate discharge and drainage controls through the implementation of this Plan. Properly engineered secondary containment structures are in place to contain any potential spills from oil bulk storage containers. Spill response equipment is available on site to contain minor spills.

4.6 FACILITY DISCHARGE COUNTERMEASURES [112.7(a)(3)(iv)]

JWN has provided adequate means for the discovery, response, and cleanup of discharges of oil through the implementation of this Plan. Through routine inspections, potential discharges will be discovered. If such a discharge is found, appropriate response and cleanup measures are in place. Any cleanup beyond discharge response is considered remediation and is beyond the scope of this Plan.

All bulk oil storage containers operated by JWN have secondary containment by either a concrete dike or a double walled tank. According to EPA Region 4 policy memorandum “Use of Alternative Secondary Containment Measures at Facilities Regulated under the Oil Pollution Prevention Regulation (40 CFR Part 112)” dated April 29, 1992, double-walled tanks are acceptable devices for secondary containment as long as the following conditions are met:

1. The tank system is shop fabricated.
2. Inner tank is UL approved.
3. Overfill protection is provided.
4. Flow restriction is installed.
5. Individual tank capacity is 12,000 gallons or less.
6. All loading/unloading oil transfers are monitored.

The used oil tank located at this facility meets this double-walled specification (see Table 6-1).

Tanks with impervious secondary containment dikes are of a sufficient capacity to contain the entire tank contents.
5.0 **DISCHARGE RESPONSE**

5.1 **EMERGENCY CONTACTS [112.7(a)(3)(vi)]**

5.1.1 **Facility Contacts**

Several individuals at BNA have special training and authority to respond to spill incidents. In the event of a major oil spill, the following call-down list should be followed until one of the individuals listed is contacted.

Table 5-1 Spill Notification Contacts

<table>
<thead>
<tr>
<th>Contact No.</th>
<th>Name</th>
<th>Title</th>
<th>Work</th>
<th>Alternate</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matt Ostermann</td>
<td>Facility Response Coordinator</td>
<td>615-350-5000</td>
<td>516-902-</td>
<td>516-902-1566 (Cell)</td>
</tr>
<tr>
<td>2</td>
<td>Kathy Hatter</td>
<td>Alternate Facility Response Coordinator</td>
<td>615-350-6551</td>
<td>615-347-</td>
<td>4196</td>
</tr>
<tr>
<td>3</td>
<td>Ken Whatley</td>
<td>MNAA Environmental Compliance Coordinator</td>
<td>615-275-1485</td>
<td>615-504-</td>
<td>615-672-5759</td>
</tr>
<tr>
<td>4</td>
<td>Michelle Baker</td>
<td>MNAA Asst. Manager, Environmental Compliance</td>
<td>615-275-1444</td>
<td>615-504-</td>
<td>615-504-2890 (Cell)</td>
</tr>
</tbody>
</table>

5.1.2 **Discharge Notification**

National Response Center Toll-free: (800) 424-8802

Tennessee Emergency Management Agency (TEMA) Toll-free: (800) 262-3300

United States Environmental Protection Agency (USEPA), Region 4 24-hr hotline: (404) 562-8700

5.1.3 **State and Local Emergency Response Agencies**

Metropolitan Nashville Fire Department 911

Cleanup Requirements Information

TN Water Resources (615) 532-0625
5.1.4 Available Spill Response Contractors

HEPACO (800) 888-7689
First Response (800) 914-9111
Premier Protective Services (800) 470-5958

5.2 DISCHARGE RESPONSE PROCEDURES [112.7(a)(5)]

As described in Section 6.0, there are a number of potential sources of oil-product releases at BNA. Upon detection of a spill, the following procedures are used to respond to the release.

1. Quickly assess the severity of the discharge in terms of quantity and consequences.

2. Notify the Facility Response Coordinator and inform him/her of the location of the discharge, the type of material discharged, the quantity of material discharged, and any additional information that he/she may need.

3. For a MINOR SPILL (a spill of <9 gal), and if adequately trained in discharge response, the following procedures can be followed:
 - Obtain discharge response equipment from the nearest spill kit.
 - Stop the flow of material if possible.
 - Isolate nearby floor drains or storm drains with absorbent materials.
 - If inside, place absorbent materials along the bottom of nearby doorways that lead outside.
 - Surround the spilled material with absorbent materials.
 - Spread granular absorbent on the spilled oil to stabilize and to contain it.
 - Use a shovel or other tools to place the absorbent material and absorbed oil in an empty drum. Properly label the drum.
• Use soapy water, detergent, or other appropriate materials to clean up the remaining oil. Allow flow into drains only after any visible oil sheen has been removed.

• Restock spill kit as necessary.

4. For a MAJOR SPILL (a spill >9 gal), contact one of the contract spill response companies listed in Section 5.1.4. The Facility Response Coordinator is responsible for initiating the following action, as appropriate:

• Extinguish any open flames or smoking material, or cease any operation such as welding that could ignite the spilled material.

• All feasible steps shall be immediately taken to reduce or eliminate further spillage. Examples include closing any open valve on the secondary containment systems, reconnecting or tightening a hose during fuel loading/unloading procedures, or tripping the emergency cutoff switch on transfer pumps.

• For aviation fuel spills, trained spill response employees should utilize the sorbent material most appropriate for the volume spilled and location. Note that aviation fuel spills may require the deployment of absorbents specially manufactured to dissipate static charges (especially in areas with little or no ventilation). Spills should be contained by the use of sorbent socks around the edges or down-slope, and apply sorbent clay or sheets within the spill area to absorb the spilled material.

• If the fuel spill has entered a stream or the stream bank, IMMEDIATELY notify the National Response Center (800-424-8802) and the Tennessee Emergency Management Agency (800-262-3300) and follow their guidance. Deploy floating booms to contain spills as much as possible.

• Spill response actions outlined in this section are immediate actions that should be taken to contain spills and minimize dangers to public health and safety and to the environment. Actions beyond spill response are considered remedial actions, and should be approved and/or coordinated by TDEC.

5. The Facility Response Coordinator is responsible for notifying the proper authorities of reportable spills. Complete as much of the appropriate discharge report form found in Appendix C as possible.
5.3 DISCHARGE NOTIFICATION

Table 5-2 contains the Discharge Notification Requirements in event of several spill volume scenarios for written and oral notifications requirements to State or Federal agencies.

Appendix C contains blank discharge report forms for the JWN facility. The forms ask for many types of information, and this broad range of information covers everything that must be reported for the various oral and written notifications for federal and state agencies. Not all of this information will be required for a given notification; please refer to Sections 5.3.1 and 5.3.2 for the specific requirements. However, try to have as much of the information available as possible. Maintain copies of each report and any attachments in Appendix C.

Table 5-2 Discharge Notification Requirements

<table>
<thead>
<tr>
<th>Type of Discharge</th>
<th>Oral Notification to:</th>
<th>Written Notification to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NRC</td>
<td>EPA</td>
</tr>
<tr>
<td>Discharge of oil to water that exceeds 1,000 gallons</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Two discharges of oil to water that exceed 42 gallons each within any 12-month period</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Discharge of oil to water that violates applicable water quality standards (i.e. causes a sheen on the water)</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Discharge of oil to water that causes film or sheen upon or discoloration of water surface or adjoining shorelines</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Discharge of oil to water that causes sludge or emulsion to be deposited beneath water surface or upon adjoining shorelines</td>
<td>Yes</td>
<td>2</td>
</tr>
</tbody>
</table>

Abbreviations:
- TEMA - Tennessee Emergency Management Agency
- EPA - U.S. EPA Region 4
- TDEC - Tennessee Department of Environment and Conservation

Notes:
1. Notify only if discharge violates applicable water quality standards, causes a film or sheen upon or discoloration of the surface of the water or adjoining shorelines, or causes a sludge or emulsion to be deposited beneath the surface of the water or upon adjoining shorelines
2. Notify only if NRC cannot be contacted
3. Notify only if this discharge is second of two discharges exceeding 42 gallons each within 12 months
4. Notify only if required by Tennessee Department of Environmental Conservation
5.3.1 *Oral Notifications [112.7(a)(4)]*

Under the Clean Water Act, discharges of oil to navigable waters of the United States meeting the following criteria may be harmful to the public health or welfare or the environment:

- Violates applicable Tennessee water quality standards; or
- Causes a film or sheen upon or discoloration of the surface of the water or adjoining shorelines or causes a sludge or emulsion to be deposited beneath the surface of the water or upon adjoining shorelines.

Such a discharge does not have to be large. For example, a pint of oil can cover one acre of water surface area. Nonetheless, an immediate notification must be made to the National Response Center (NRC) for any such discharge of oil, and if notification to the NRC is not possible, U.S. EPA Region 4 must be contacted. Additionally, the State of Tennessee, via the Tennessee Emergency Management Agency (TEMA), must be notified immediately if such a discharge of oil occurs. TEMA will notify other State responders as necessary. No other verbal notification to a State agency is required.

National Response Center
(800) 424-8802

TEMA
(800) 262-3300

U.S. EPA Region 4
(404) 562-8700

When notifying any of the above agencies, the following information must be provided and documented (Appendix C contains an example Discharge Report):

1. The exact address or location and phone number of the facility;
2. The date and time of the discharge;
3. The type of material discharged;
4. Estimates of the total quantity discharged;
5. Estimates of the quantity discharged into or upon the navigable waters of the United States or adjoining shorelines;
6. The source of the discharge;
7. A description of all affected media;
8. The cause of the discharge;
9. Any damages or injuries caused by the discharge;
10. Actions being used to stop, remove, and mitigate the effects of the discharge;

11. Whether an evacuation may be needed; and

12. The names of individuals and/or organizations that have also been contacted.

Additionally, try to have as much of the following information available as possible:

1. Your name, location, organization, and telephone number;

2. Name and address of the party responsible for the incident;

3. Danger or threat posed by the release or discharge;

4. Weather conditions at the incident location; and,

5. Any other information that may help emergency personnel respond to the incident.

5.3.2 Written Notifications [112.4(a), 112.4(c)]

The U.S. EPA requires that a written report be submitted within 60 days to the appropriate Regional Administrator and State agency (TDEC) whenever there is a single discharge of oil exceeding 1,000 gallons or two discharges of oil exceeding 42 gallons each within any 12-month period. Send the reports to the following addresses:

United States Environmental Protection Agency
Region 4
Sam Nunn Atlanta Federal Center
61 Forsythe Street, SW
Atlanta, Georgia 30303

Tennessee Department of Environment and Conservation
Division of Water Resources
312 Rosa L. Parks Ave
Nashville, TN 37243

The written report must contain the following information:

1. Name of the facility;

2. Your name;

3. Location of the facility;
4. Maximum storage or handling capacity of the facility and normal daily throughput;

5. Corrective action and countermeasures you have taken, including a description of equipment repairs and replacements;

6. An adequate description of the facility, including maps, flow diagrams, and topographical maps, as necessary;

7. The cause of the discharge, including a failure analysis of the system or subsystem in which the failure occurred;

8. Additional preventative measures taken or contemplated to minimize possibility of recurrence; and

9. Such other information as the Regional Administrator may reasonably require pertinent to the Plan or discharge.

Although the USEPA Regional Administrator may request a copy of the SPCC Plan after reviewing the report, it is not necessary to include a copy with the report. Appendix C contains an example discharge report form.

5.4 DISPOSAL OF RECOVERED MATERIALS [112.7(a)(3)(v)]

JWN currently contracts with Industrial Oil, Inc. for the disposal of its waste oils, oil-soaked rags, granular absorbent, etc. All oil-soaked material generated by JWN is properly disposed of by an approved contractor. In the event of an oil discharge at one of the JWN facilities, oil will be recovered using granular absorbent and oil absorbent materials found in the spill kits described in Section 7.1.

5.5 FACILITY RESPONSE PLAN [112.20]

A Facility Response Plan (FRP) is a plan for responding, to the maximum extent practicable, to a worse-case discharge of oil or to a substantial threat of such a discharge. An FRP also covers response to smaller discharges. However, an FRP is required only for a non-transportation-related onshore facility that, because of its location, could reasonably be expected to cause substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines. As documented in Section 3.4, the JWN facilities do not meet the substantial harm criteria and, therefore, do not require an FRP.
Table 6-1 Potential Discharge Predictions / Secondary Containment for JWN Controlled Bulk Storage Containers

<table>
<thead>
<tr>
<th>Source (Reference Table 4-1)</th>
<th>Potential Types of Failure</th>
<th>Volume (gal)</th>
<th>Potential Rate of Discharge (gal/hr)</th>
<th>Direction of Flow</th>
<th>Secondary Containment (Amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet A “Middle Tank”</td>
<td>Tank Rupture</td>
<td>12,000</td>
<td>12,000</td>
<td>Within Secondary Containment; Toward Oil/Water Separator</td>
<td>Yes, Concrete Dike Wall; (~22,000 gal)</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet A “End Tank”</td>
<td>Tank Rupture</td>
<td>12,000</td>
<td>12,000</td>
<td>Within Secondary Containment; Toward Oil/Water Separator</td>
<td>Yes, Concrete Dike Wall; (~22,000 gal)</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avgas Tank</td>
<td>Tank Rupture</td>
<td>12,000</td>
<td>12,000</td>
<td>Within Secondary Containment; Toward Oil/Water Separator</td>
<td>Yes, Concrete Dike Wall; (~22,000 gal)</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avgas Tank</td>
<td>Tank Rupture</td>
<td>1,000</td>
<td>1,000</td>
<td>Within interstitial space; On paved ramp area to west toward storm water conveyance</td>
<td>Yes, Steel Double-Walled Tank; (1,000 gal+)</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used Oil Tank</td>
<td>Tank Rupture</td>
<td>250</td>
<td>250</td>
<td>Paved area around tank; storm water conveyance</td>
<td>Yes, Steel Double-Walled Tank; (250 gal+)</td>
</tr>
<tr>
<td></td>
<td>Tank Overfill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobil Tanker Truck - Jet A #1 & #2</td>
<td>Tank Rupture</td>
<td>3,000</td>
<td>3,000</td>
<td>Concrete pad north of Hangar No. 1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hose Rupture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobil Tanker Truck - Avgas</td>
<td>Tank Rupture</td>
<td>1,200</td>
<td>1,200</td>
<td>Concrete pad north of Hangar No. 1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hose Rupture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source (Reference Table 4-1)</td>
<td>Potential Types of Failure</td>
<td>Volume (gal)</td>
<td>Potential Rate of Discharge (gal/hr)</td>
<td>Direction of Flow</td>
<td>Secondary Containment (Amount)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Tank Rupture</td>
<td>500</td>
<td>500</td>
<td>Within interstitial space; Within Secondary Containment wall toward Oil/ Water Separator</td>
<td>Yes, Steel Double-Walled Tank; (500 gal+)</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>Tank Rupture</td>
<td>500</td>
<td>500</td>
<td>Within interstitial space; Within Secondary Containment wall toward Oil/ Water Separator</td>
<td>Yes, Steel Double-Walled Tank; (500 gal+)</td>
</tr>
<tr>
<td></td>
<td>Fuel Transfer Spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Generator</td>
<td>Tank Rupture</td>
<td>200</td>
<td>200</td>
<td>Grass area around generator</td>
<td>No (not required – operating equipment)</td>
</tr>
<tr>
<td>Truck Loading/ Unloading Rack</td>
<td>Tank truck rupture, valve or pipe failure, tank truck overfill</td>
<td>3,400</td>
<td>3,400</td>
<td>Within secondary containment area to Oil Water Separator</td>
<td>Yes, Concrete Curbing to OWS; (3,400 gal from concrete and OWS)</td>
</tr>
<tr>
<td>Self-Service Airplane Unloading Area</td>
<td>Nozzle, valve or pipe failure, airplane overfill</td>
<td>1,000</td>
<td>1,000</td>
<td>On paved ramp area toward storm water conveyance</td>
<td>Yes, Spill Kit provided at unloading area</td>
</tr>
<tr>
<td>Used Oil drums</td>
<td>Drum rupture, drum overfill</td>
<td>55</td>
<td>55</td>
<td>Within secondary containment pallet</td>
<td>Yes, Containment Pallet</td>
</tr>
</tbody>
</table>
7.0 DISCHARGE PREVENTION MEASURES, CONTROLS, AND COUNTERMEASURES

7.1 CONTAINMENT SYSTEMS, DIVERSIONARY STRUCTURES, AND SPILL EQUIPMENT [112.7(c)]

In order to prevent discharges of oil to navigable waterways, JWN has provided appropriate secondary containment for all bulk storage containers and discharge prevention equipment capable of containing oil prior to cleanup. JWN has a well-stocked spill kit located at the Fuel Tank Farm area and at the self-service fueling area.

The recommended spill equipment under JWN control should be composed of the following equipment:

- drain blocker/seal
- floating boom – 1 x 25’ or 50’
- sorbent pads
- sorbent socks – 10 x 48”, 6 x 10’
- sorbent pillows
- loose sorbent
- non-sparking shovel, squeegee, broom
- PPE (gloves, coveralls, goggles)
- signs
- barricade tape

7.2 CONTINGENCY PLANNING [112.7(d)]

As described in Section 6.0, JWN has provided adequate secondary containment structures and discharge response procedures and equipment. Therefore, this section is not applicable.
7.3 **INSPECTIONS, TESTS, AND RECORDS [112.7(e)]**

Documented visual inspections of bulk oil storage facilities listed in Table 4-1 will be conducted on the following schedule:

- Tanks, Piping, Loading Areas: Monthly (Visually)
- Engineering Level Controls for Tanks: Annually

Records of these inspections will be documented and signed by the inspector or the responsible person. A sample inspection form is included in Appendix D. Completed inspection forms will be maintained on-site for a minimum of three years.

7.4 **PERSONNEL, TRAINING, AND DISCHARGE PREVENTION PROCEDURES [112.7(f)]**

7.4.1 **Personnel Training [112.7(f)(1)]**

All appropriate facility personnel are trained in:

- The laws and regulations regarding spills, releases, and pollution control.
- The contents of the SPCC plan.
- The operation and maintenance of equipment to prevent discharges.

The level of detail for employee training depends on the person’s level of responsibility for spill control. Operations personnel with the day-to-day responsibility for spill prevention and response are given additional training. This training is in accordance with requirements for incidental spill control of the HAZCOM Standard (29 CFR 1910.1200).

SPCC training will include the following:

- A review of this SPCC Plan;
- Proper procedures for routine handling of fuel products;
- Review of procedures to follow in the event of a spill, including the required reporting protocol;
- Review of any recent spill events or failures, malfunctioning components, and recently developed precautionary measures; and
- An overview of the important aspects of applicable local, state and federal pollution laws and regulations.
Spill prevention and response training is conducted annually for all appropriate personnel. Informal briefings are held periodically through the year to update employees on changes in regulations, laws, or in-house procedures.

Training records are maintained in readily accessible environmental files for a period of three years. A sample training log is included in Appendix E.

All JWN personnel that handle oil will be instructed on discharge prevention procedures, the actions to take in the event of a discharge, the use of discharge response equipment, applicable regulations pertaining to oil discharges, general facility operations, and the contents of this Plan. Those trained will include not only employees working in the shipping and maintenance departments but also supervisors and department managers, as necessary. This instruction will occur within a reasonable time after implementation of this Plan for current employees and shortly after new hires begin work. Records of employee training will be maintained on site for at least three years.

7.4.2 **Designated Person Accountable for Discharge Prevention [112.7(f)(2)]**

Mr. Matt Ostermann is the designated person accountable for discharge prevention at the JWN facility.

7.4.3 **Discharge Prevention Briefings [112.7(f)(3)]**

All operations personnel that handle oil-filled equipment or oil containers will take part in discharge prevention briefings at least once a year to ensure adequate understanding of the Plan. Topics will include known discharges, failures, malfunctioning components, and any recently developed precautionary measures. Additionally, these briefings will serve as refreshers for the training described in Section 7.4.1.

7.5 **SECURITY [112.7(g)]**

7.5.1 **Fencing**

Fencing, gates, and roving police patrols are provided at all the JWN facilities including the oil storage, processing, and transfer facilities.
7.5.2 **Valves**

The only valves that could cause inadvertent discharge oil at the facility are located at the fuel tank farm and the self-service fueling area. These dispensing pumps are in a fenced, secured area of JWN and have controlled access by only authorized personnel. The self-service fueling area can be used by all aircraft; however, aircraft must be hooked up to a grounding system prior to refueling in order to activate pumps.

7.5.3 **Pumps**

Start controls for pumps are located in locked facilities.

7.5.4 **Capping or Blank-Flange Piping**

Fill pipes at each of the oil storage tanks are capped when not use. These areas are located in secure areas of JWN.

7.5.5 **Lighting**

Exterior and interior lighting at each facility is sufficient for the discovery of discharges from the oil storage sources and for the prevention of vandalism.

7.6 **FACILITY TANK CAR AND TANK TRUCK LOADING / UNLOADING**

[112.7(h)]

There is one tank truck fuel loading/unloading “Rack” at the JWN facility. The loading rack feeds multiple tanks at the tank farm with manifolded piping and valves that allow the loading process to be directed from the tanker truck to the selected storage tank. A quick drainage system that includes a sloped, curbed concrete pad with a central drain and an oil/water separator is used as secondary containment for the loading rack.

There are two loading and unloading “Areas” used by JWN at the Used Oil Tank and the self-service fueling area. At the Used Oil Tank, loading of individual bulk storage containers in these areas is via individual tank loading pipes and flexible hoses by a contract oil recycling company. Aircraft refueling at the self-service fueling area is via flexible hoses.

Best management practices (BMPs) will be followed during each oil loading/unloading operation to prevent or react quickly to any potential discharge condition.
7.6.1 *Truck Loading/Unloading Operations [40 CFR 112.7(h)(1)]*

The quick drainage system will hold the maximum capacity of any single compartment of a tank truck loaded at this facility. The quick drainage system will contain approximately 3,400 gallons (1,400 gallons in the concrete unloading curb and 2,000 gallons in the oil/water separator) which is the maximum capacity of a single compartment tanker truck used at the site. The following BMPs will be followed for all loading/unloading truck operations at both the loading rack and the loading area:

7.6.1.1 *Best Management Practices*

1. Drivers of loading/unloading trucks will be trained by the contract supply company in the proper operation of the vehicles to prevent unplanned discharges.

2. A JWN employee will be present during the entire unloading/loading operation in addition to the truck driver.

3. Prior to transferring oil in the loading rack or area, the driver must perform a visual inspection of the truck/trailer to ensure that all equipment is in safe working order.

4. Prior to transferring oil in the loading rack or area, the driver and a JWN employee will inventory the tank to be filled and the volume that will be transferred. The volume will be reconciled to ensure overfill of a tank does not occur.

5. The driver will be present throughout the entire loading or unloading operation during which time the driver will visually monitor the transfer operation and the tank fill gauge to prevent overfilling of either the storage tank or the tank truck.

6. In the event of a discharge, the driver of the truck, or the JWN employee, will inform response personnel immediately.

Prior to refueling at the self-service fueling area, the aircraft must be hooked up to a grounding system in order to activate pumps.

7.6.2 *Warning Light or Physical Barrier System [40 CFR 112.7(h)(2)]*

During transfer of fuel in the loading rack, warning signs will be provided to prevent vehicular departure before disconnection of the transfer lines. All trucks unloading or loading petroleum products will utilize wheel chocks that will prevent the vehicle from departing while hoses are attached. All aircraft must be hooked up to a grounding system prior to refueling in order to activate pumps.
7.6.3 **Inspection of Lowermost Drainage Outlets [40 CFR 112.7(h)(3)]**

Prior to tank truck departure, the driver will inspect all drain outlets on the truck. If necessary, the outlets will be tightened, adjusted, or replaced to prevent the discharge of oil during transit.

For aircraft, aircraft operators will inspect the nozzle and grounding system to prevent the discharge of oil during transit.

7.7 **Brittle Fracture Evaluation [112.7(i)]**

Because there are no field-constructed aboveground containers operated by JWN, no containers must be evaluated for risk of discharge or failure due to brittle fracture or other catastrophe. Therefore, this section is not applicable.

7.8 **State Discharge Prevention Requirements [112.7(j)]**

Tennessee has no regulation dealing with the prevention and containment of discharges of oil to navigable waters or adjoining shorelines more stringent than the federal requirements. Therefore, only the requirements of 40 CFR Part 110 and 112 apply to the JWN facility.

7.9 **Qualified Oil-Filled Operational Equipment [40 CFR 112.7(k)]**

Oil-filled operational equipment is equipment that includes an oil storage container (or multiple containers and associated piping intrinsic to the operation of the equipment) in which the oil is present solely to support the function of the apparatus or the device. It is not considered a bulk storage container, and does not include oil-filled manufacturing equipment (flow-through process). Some examples include, but are not limited to: hydraulic systems, lubricating systems (e.g., those for pumps, compressors, and other rotating equipment including pump jack lubrication systems), gear boxes, machining coolant systems, heat transfer systems, transformers, circuit breakers, electrical switches, and other systems containing oil solely to enable the operation of the device.

Instead of providing secondary containment for qualified oil-filled operational equipment, an owner or operator may prepare an oil spill contingency plan and a written commitment of manpower, equipment,
and materials to quickly control and remove discharged oil. The facility must also have an inspection or monitoring program for the equipment to detect a failure and/or discharge.

The oil-filled operational equipment located at JWN includes the emergency diesel generator. The emergency diesel generator is inspected monthly and spill kits are maintained on site in case of a release.

All oil-filled transformers are under the direct responsibility of Nashville Electric Service (NES) and will not be listed in JWN’s SPCC Plan.

Therefore all oil-filled operational equipment have secondary containment provided as required by 40 CFR 112.7(c).

7.10 FACILITY DRAINAGE [112.8(b)]

7.10.1 Drainage from Diked Storage Areas [112.8(b)(1) & (2)]

Drainage from the diked area at the tank farm is not performed. Storm water that collects in the dike is allowed to evaporate and not released from the diked area or it can be directed to the oil/water separator. If oil sheen is observed in the diked area, the oily water will be directed through the oil/water separator.

7.10.2 Design of Facility Drainage Systems [112.8(b)(3)]

Undiked areas with the potential for a discharge include the individual truck unloading areas at the used oil tank, at the self-service fueling area, and on the parking apron during fueling of individual airplanes. Each of these areas is located on an impervious concrete pad that will provide immediate containment for smaller spills. However, the storm water drainage system from the aircraft parking apron runs by overland flow to drainage ditches and culverts onsite then ultimately to the Cumberland River. Per the regulatory citation above, a drainage system will be designed and installed to route flow into retention basins and then spill response equipment would be used to retain a discharge on site.

7.11 BULK STORAGE CONTAINERS [112.8(c)]

The SPCC regulation 40 CFR 112.2 defines Bulk Storage Containers as follows:
“Bulk storage container means any container used to store oil. These containers are used for purposes including, but not limited to, the storage of oil prior to use, while being used, or prior to further distribution in commerce. Oil-filled electrical, operating, or manufacturing equipment is not a bulk storage container.”

With the exception of the mobile fueling trucks and the emergency generator, each of the oil storage containers listed in Table 4-1 meet the definition provided above of a bulk storage container.

The fuel tank for the emergency generator is an integral part of an operating piece of equipment, and therefore does not meet the definition of bulk storage containers. Secondary containment is provided as discussed in Section 7.9.

All oil-filled transformers are under the direct responsibility of Nashville Electric Service (NES) and will not be listed in JWN’s SPCC Plan.

7.11.1 Container Compatibility with Contents and Storage Conditions [112.8(c)(1)]

All above ground bulk storage containers at the JWN facilities are constructed of steel, which is compatible with oil product used at the facility.

7.11.2 Secondary Containment [112.8(c)(2)]

Secondary containment is provided for each bulk storage container as defined in 112.2. A description of each secondary containment system is provided in Table 6-1.

7.11.3 Drainage of Uncontaminated Rainwater from Diked Areas [112.8(c)(3)]

The diked areas at the facility exposed to rainwater are at the tank farm and the self-service airplane unloading area. From the tank farm, the rainwater is allowed to evaporate and is not drained from the containment or it can be directed to the oil/water separator. From the self-service airplane unloading area, rainwater will be drained from the diked area only under the following conditions:

- The bypass/drainage valve from the diked area will normally be kept closed and locked;
• The retained rainwater will be inspected to ensure that its presence will not cause an oil spill;

• Opening and resealing the bypass/drainage valve will only occur under responsible supervision by a trained Nashville Hangar employee; and

• Adequate records of such events (i.e. opening the drain valve and letting the rainwater run out onto the ground) will be kept.

7.11.4 Corrosion Protection of Completely Buried Metallic Storage Tanks [112.8(c)(4)]

There are no completely buried metallic storage tanks at facility. Therefore, this section is not applicable.

7.11.5 Corrosion Protection of Partially Buried or Bunkered Metallic Tanks [112.8(c)(5)]

There are no partially buried or bunkered metallic tanks at the facility. Therefore, this section is not applicable.

7.11.6 Aboveground Container Periodic Integrity Testing [112.8(c)(6)]

In addition to regular visual inspections, aboveground bulk storage containers undergo an additional method of integrity inspection. The applicable industry standard for this testing shall be Steel Tank Institute (STI) SP001 for shop fabricated tanks. JWN shall comply with the most current version of these standards for the integrity inspections.

Under the STI SP001 program, tanks shall be inspected monthly and annually. Formal external inspections are conducted by certified STI SP001 inspectors.

7.11.7 Leakage Through Defective Internal Heating Coils [112.8(c)(7)]

No container at any of the JWN facility has internal heating coils. Therefore, this section is not applicable.

7.11.8 Good Engineering Practice of Bulk Storage Containers [112.8(c)(8)]

Good engineering practices have been installed at each bulk storage container (tank) to avoid discharges. These practices include:
• Installation of a high liquid level pump cut off device has been installed in each tank located in the tank farm (3 tanks 12,000 gallons each) that will shut down the transfer operation from the tanker truck to prevent overfilling. This device is located in the fill line that automatically seats upon reaching a predetermined high level in the tank shutting off transfer from the truck.

• The used oil tank does not have a direct vision gauge; however, this tank is filled by manually pouring the used oil into an oversized fill box. The use of the fill box and the manual filling operation allows the user to visually note when the tank has reached a full volume. This tank will not have visual tank level site-gauges installed for these reasons.

• The liquid level sensing devices in the three large tanks, 500-gallon gasoline, 500-gallon diesel tanks, and self-service airplane unloading tank shall be tested on an annual basis to ensure they are properly operating and in good repair. They shall be operationally tested to ensure the flow is stopped at the desired high tank level.

7.11.9 Observation of Effluent Treatment Facilities [112.8(c)(9)]

JWN does not operate an effluent treatment facility. Therefore, this section is not applicable.

7.11.10 Correction of Visible Discharges [112.8(c)(10)]

Significant discharges (i.e. greater than a constant drip) from bulk storage containers will be corrected promptly where a potential for violation of water quality standards could be present (i.e. could cause a sheen on the water via storm water runoff or direct contact into navigable water). This includes oil discharges from any part of an oil bulk storage container and piping.

For the diked area of the tank farm where oil is found in the secondary containment structure, the tanks will be immediately taken out of service until investigations can commence to determine the reason for discharged oil. At no time will oil discharged into the secondary containment structure be allowed to remain.

7.11.11 Position of Mobile or Portable Oil Storage Containers [112.8(c)(11)]

There are three mobile or portable oil storage containers (i.e. airplane fueling trucks) that are under the direct responsibility of CFM dba Contour Aviation. In December 2006, EPA amended the SPCC rule to
streamline some of the requirements for facilities with smaller oil storage capacity and specific types of equipment, including those for sized secondary containment for mobile refuelers. Owners and operators of mobile refuelers at a non-transportation-related facility will no longer need to provide sized secondary containment systems, which are systems large enough to contain the capacity of the largest single compartment or container on a mobile refueler along with enough room to contain precipitation. However, the SPCC rule’s general secondary containment requirements under 40 CFR 112.7(c) still apply to mobile refuelers as well as containment requirements associated with oil transfers. At JWN, the mobile refuelers are parked on the concrete pad north of Hangar No. 1 when not in use. Secondary containment is provided by a combination of active (spill response equipment) and passive containment (the general topography of the area west of the terminal office will flow towards the apron and remain on site).

There are also two used oil drums in the maintenance hangar. Drums are stored on secondary containment pallets and spill response equipment is available.

7.12 FACILITY TRANSFER OPERATIONS, PUMPING, AND FACILITY PROCESSES [112.8(d)]

7.12.1 Protection of Buried Piping [112.8(d)(1)]

There is no buried piping at the facility. Therefore, this section is not applicable.

7.12.2 Terminal Connections [112.8(d)(2)]

The only terminal piping connection at the facility is associated with the tank farm loading rack. When not in use, this terminal connection is capped.

7.12.3 Design of Pipe Supports [112.8(d)(3)]

Minimal aboveground piping is located with the JWN tanks. Pipe supports for aboveground piping are properly installed for each bulk oil storage container.
7.12.4 *Inspection of Aboveground Valves, Piping, and Appurtenances [112.8(d)(4)]*

The five bulk storage containers associated with the tank farm have valves, piping, and appurtenances required for the operation of the system. These systems will be visually inspected monthly to assess the general condition of items, such as, flange joints, expansion joints, valves, and metal surfaces. A sample inspection form is included in Appendix D. Completed inspection forms will be maintained on-site for a minimum of three years.

7.12.5 *Protection of Aboveground Piping and Other Transfer Operations from Vehicular Traffic [112.8(d)(5)]*

Aboveground piping and transfer operations are protected by vehicular traffic by bollards and security fences where necessary.
Table 8-1 identifies the areas where implementation of the new 40 CFR 112 regulations is needed at the JWN facility. This SPCC Plan has been written such that the items listed in Table 8-1 have been completed. In order for JWN to comply fully with 40 CFR Part 112, these issues must be addressed and implemented by the schedule provided below in Table 8-1. For each implementation issue the table shows the required implementation action and the anticipated implementation schedule. Once the actions have been implemented, make the necessary changes to the administrative update form in the Table located in Appendix B.
Appendix A
Applicable Regulations
40 CFR 110
PART 110—DISCHARGE OF OIL

§ 110.1 Definitions.

Terms not defined in this section have the same meaning given by the Section 311 of the Act. As used in this part, the following terms shall have the meaning indicated below:

Act means the Federal Water Pollution Control Act, as amended, 33 U.S.C. 1251 et seq., also known as the Clean Water Act;

Administrator means the Administrator of the Environmental Protection Agency (EPA);

Applicable water quality standards means State water quality standards adopted by the State pursuant to section 303 of the Act or promulgated by EPA pursuant to that section;

MARPOL 73/78 means the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto, Annex I, which regulates pollution from oil and which entered into force on October 2, 1983;

Navigable waters means waters of the United States, including the territorial seas.

(1) For purposes of the Clean Water Act, 33 U.S.C. 1251 et seq. and its implementing regulations, subject to the exclusions in paragraph (2) of this section, the term “waters of the United States” means:

(i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide;

(ii) All interstate waters, including interstate wetlands;

(iii) The territorial seas;

(iv) All impoundments of waters otherwise identified as waters of the United States under this section;

(v) All tributaries, as defined in paragraph (3)(iii) of this definition, of waters identified in paragraphs (1)(i) through (iii) of this definition;

(vi) All waters adjacent to a water identified in paragraphs (1)(i) through (v) of this definition, including wetlands, ponds,
lakes, oxbows, impoundments, and similar waters;

(vii) All waters in paragraphs (1)(vii)(A) through (E) of this definition where they are determined, on a case-specific basis, to have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition. The waters identified in each of paragraphs (1)(vii)(A) through (E) of this definition are similarly situated and shall be combined, for purposes of a significant nexus analysis, in the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition. Waters identified in this paragraph shall not be combined with waters identified in paragraph (1)(vi) of this definition when performing a significant nexus analysis. If waters identified in this paragraph are also an adjacent water under paragraph (1)(vi), they are an adjacent water and no case-specific significant nexus analysis is required.

(A) Prairie potholes. Prairie potholes are a complex of glacially formed wetlands, usually occurring in depressions that lack permanent natural outlets, located in the upper Midwest.

(B) Carolina bays and Delmarva bays. Carolina bays and Delmarva bays are ponded, depressional wetlands that occur along the Atlantic coastal plain.

(C) Pocosins. Pocosins are evergreen shrub and tree dominated wetlands found predominantly along the Central Atlantic coastal plain.

(D) Western vernal pools. Western vernal pools are seasonal wetlands located in parts of California and associated with topographic depression, soils with poor drainage, mild, wet winters and hot, dry summers.

(E) Texas coastal prairie wetlands. Texas coastal prairie wetlands are freshwater wetlands that occur as a mosaic of depressions, ridges, intermound flats, and mima mound wetlands located along the Texas Gulf Coast.

(viii) All waters located within the 100-year floodplain of a water identified in paragraphs (1)(i) through (iii) of this definition and all waters located within 4,000 feet of the high tide line or ordinary high water mark of a water identified in paragraphs (1)(i) through (v) of this definition where they are determined on a case-specific basis to have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition. For waters determined to have a significant nexus, the entire water is a water of the United States if a portion is located within the 100-year floodplain of a water identified in paragraphs (1)(i) through (iii) of this definition or within 4,000 feet of the high tide line or ordinary high water mark. Waters identified in this paragraph shall not be combined with waters identified in paragraph (1)(vi) of this definition when performing a significant nexus analysis. If waters identified in this paragraph are also an adjacent water under paragraph (1)(vi), they are an adjacent water and no case-specific significant nexus analysis is required.

(2) The following are not “waters of the United States” even where they otherwise meet the terms of paragraphs (1)(iv) through (viii) of this section.

(i) Waste treatment systems (other than cooling ponds meeting the criteria of this paragraph) are not waters of the United States.

(ii) Prior converted cropland. Notwithstanding the determination of an area’s status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act, the final authority regarding Clean Water Act jurisdiction remains with EPA.

(iii) The following ditches:

(A) Ditches with ephemeral flow that are not a relocated tributary or excavated in a tributary.

(B) Ditches with intermittent flow that are not a relocated tributary, excavated in a tributary, or drain wetlands.

(C) Ditches that do not flow, either directly or through another water, into a water identified in paragraphs (1)(i) through (iii) of this definition.

(iv) The following features:

(A) Artificially irrigated areas that would revert to dry land should application of water to that area cease;

(B) Artificial, constructed lakes and ponds created in dry land such as farm and stock watering ponds, irrigation ponds, settling basins, fields flooded for rice growing, log cleaning ponds, or cooling ponds;

(C) Artificial reflecting pools or swimming pools created in dry land;

(D) Small ornamental waters created in dry land;

(E) Water-filled depressions created in dry land incidental to mining or construction activity, including pits excavated for obtaining fill, sand, or gravel that fill with water;
(F) Erosional features, including gullies, rills, and other ephemeral features that do not meet the definition of tributary, non-wetland swales, and lawfully constructed grassed waterways; and

(G) Puddles.

(v) Groundwater, including groundwater drained through subsurface drainage systems.

(vi) Stormwater control features constructed to convey, treat, or store stormwater that are created in dry land.

(vii) Wastewater recycling structures constructed in dry land; detention and retention basins built for wastewater recycling; groundwater recharge basins; percolation ponds built for wastewater recycling; and water distributary structures built for wastewater recycling.

(3) In this definition, the following terms apply:

(i) Adjacent. The term adjacent means bordering, contiguous, or neighboring a water identified in paragraphs (1)(i) through (v) of this definition, including waters separated by constructed dikes or barriers, natural river berms, beach dunes, and the like. For purposes of adjacency, an open water such as a pond or lake includes any wetlands within or abutting its ordinary high water mark. Adjacency is not limited to waters located laterally to a water identified in paragraphs (1)(i) through (v) of this definition. Adjacent waters also include all waters that connect segments of a water identified in paragraphs (1)(i) through (v) or are located at the head of a water identified in paragraphs (1)(i) through (v) of this definition and are bordering, contiguous, or neighboring such water. Waters being used for established normal farming, ranching, and silviculture activities (33 U.S.C. 1344(f)) are not adjacent.

(ii) Neighboring. The term neighboring means:

(A) All waters located within 100 feet of the ordinary high water mark of a water identified in paragraphs (1)(i) through (v) of this definition. The entire water is neighboring if a portion is located within 100 feet of the ordinary high water mark;

(B) All waters located within the 100-year floodplain of a water identified in paragraphs (1)(i) through (v) of this definition and not more than 1,500 feet from the ordinary high water mark of such water. The entire water is neighboring if a portion is located within 1,500 feet of the ordinary high water mark and within the 100-year floodplain;

(C) All waters located within 1,500 feet of the high tide line of a water identified in paragraphs (1)(i) or (iii) of this definition, and all waters within 1,500 feet of the ordinary high water mark of the Great Lakes. The entire water is neighboring if a portion is located within 1,500 feet of the high tide line or within 1,500 feet of the ordinary high water mark of the Great Lakes.

(iii) Tributary and tributaries. The terms tributary and tributaries each mean a water that contributes flow, either directly or through another water (including an impoundment identified in paragraph (1)(iv) of this section), to a water identified in paragraphs (1)(i) through (iii) of this definition that is characterized by the presence of the physical indicators of a bed and banks and an ordinary high water mark. These physical indicators demonstrate there is volume, frequency, and duration of flow sufficient to create a bed and banks and an ordinary high water mark, and thus to qualify as a tributary. A tributary can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, canals, and ditches not excluded under paragraph (2) of this definition. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more constructed breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if it contributes flow through a water of the United States that does not meet the definition of tributary or through a non-jurisdictional water to a water identified in paragraphs (1)(i) through (iii) of this definition.

(iv) Wetlands. The term wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.

(v) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly situated waters in the region, significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. The term “in the region” means the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition. For an effect to be significant, it must be more than speculative or insubstantial. Waters are similarly situated when they function alike and are sufficiently close to function together in affecting downstream waters. For purposes of determining whether or
not a water has a significant nexus, the water's effect on downstream (1)(i) through (iii) waters shall be assessed by evaluating the aquatic functions identified in paragraphs (3)(v)(A) through (I) of this definition. A water has a significant nexus when any single function or combination of functions performed by the water, alone or together with similarly situated waters in the region, contributes significantly to the chemical, physical, or biological integrity of the nearest water identified in paragraphs (1)(i) through (iii) of this definition. Functions relevant to the significant nexus evaluation are the following:

(A) Sediment trapping,
(B) Nutrient recycling,
(C) Pollutant trapping, transformation, filtering, and transport,
(D) Retention and attenuation of flood waters,
(E) Runoff storage,
(F) Contribution of flow,
(G) Export of organic matter,
(H) Export of food resources, and
(I) Provision of life cycle dependent aquatic habitat (such as foraging, feeding, nesting, breeding, spawning, or use as a nursery area) for species located in a water identified in paragraphs (1)(i) through (iii) of this definition.

(vi) Ordinary high water mark. The term ordinary high water mark means that line on the shore established by the fluctuations of water and indicated by physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas.

(vii) High tide line. The term high tide line means the line of intersection of the land with the water's surface at the maximum height reached by a rising tide. The high tide line may be determined, in the absence of actual data, by a line of oil or scum along shore objects, a more or less continuous deposit of fine shell or debris on the foreshore or berm, other physical markings or characteristics, vegetation lines, tidal gages, or other suitable means that delineate the general height reached by a rising tide. The line encompasses spring high tides and other high tides that occur with periodic frequency but does not include storm surges in which there is a departure from the normal or predicted reach of the tide due to the piling up of water against a coast by strong winds such as those accompanying a hurricane or other intense storm.

NPDES means National Pollutant Discharge Elimination System;
Sheen means an iridescent appearance on the surface of water;
Sludge means an aggregate of oil or oil and other matter of any kind in any form other than dredged spoil having a combined specific gravity equivalent to or greater than water;

United States means the States, the District of Columbia, the Commonwealth of Puerto Rico, Guam, American Samoa, the Virgin Islands, and the Trust Territory of the Pacific Islands;

§ 110.2 Applicability.
The regulations of this part apply to the discharge of oil prohibited by section 311(b)(3) of the Act.

[61 FR 7421, Feb. 28, 1996]

§ 110.3 Discharge of oil in such quantities as “may be harmful” pursuant to section 311(b)(4) of the Act.

For purposes of section 311(b)(4) of the Act, discharges of oil in such quantities that the Administrator has determined may be harmful to the public health or welfare or the environment of the United States include discharges of oil that:

(a) Violate applicable water quality standards; or
§ 110.4 Dispersants.

Addition of dispersants or emulsifiers to oil to be discharged that would circumvent the provisions of this part is prohibited.

§ 110.5 Discharges of oil not determined “as may be harmful” pursuant to Section 311(b)(3) of the Act.

Notwithstanding any other provisions of this part, the Administrator has not determined the following discharges of oil “as may be harmful” for purposes of section 311(b) of the Act:

(a) Discharges of oil from a properly functioning vessel engine (including an engine on a public vessel) and any discharges of such oil accumulated in the bilges of a vessel discharged in compliance with MARPOL 73/78, Annex I, as provided in 33 CFR part 151, subpart A;

(b) Other discharges of oil permitted under MARPOL 73/78, Annex I, as provided in 33 CFR part 151, subpart A; and

(c) Any discharge of oil explicitly permitted by the Administrator in connection with research, demonstration projects, or studies relating to the prevention, control, or abatement of oil pollution.

[61 FR 7421, Feb. 28, 1996]

§ 110.6 Notice.

Any person in charge of a vessel or of an onshore or offshore facility shall, as soon as he or she has knowledge of any discharge of oil from such vessel or facility in violation of section 311(b)(3) of the Act, immediately notify the National Response Center (NRC) (800-424-8802; in the Washington, DC metropolitan area, 202-426-2675). If direct reporting to the NRC is not practicable, reports may be made to the Coast Guard or EPA predesignated On-Scene Coordinator (OSC) for the geographic area where the discharge occurs. All such reports shall be promptly relayed to the NRC. If it is not possible to notify the NRC or the predesignated OCS immediately, reports may be made immediately to the nearest Coast Guard unit, provided that the person in charge of the vessel or onshore or offshore facility notifies the NRC as soon as possible. The reports shall be made in accordance with such procedures as the Secretary of Transportation may prescribe. The procedures for such notice are set forth in U.S. Coast Guard regulations, 33 CFR part 153, subpart B and in the National Oil and Hazardous Substances Pollution Contingency Plan, 40 CFR part 300, subpart E.

(Approved by the Office of Management and Budget under control number 2050-0046)

40 CFR 112
PART 112—OIL POLLUTION PREVENTION

Subpart A—Applicability, Definitions, and General Requirements For All Facilities and All Types of Oils

Sec. 112.1 General applicability.
112.2 Definitions.
112.3 Requirement to prepare and implement a Spill Prevention, Control, and Countermeasure Plan.
112.4 Amendment of Spill Prevention, Control, and Countermeasure Plan by Regional Administrator.
112.5 Amendment of Spill Prevention, Control, and Countermeasure Plan by owners or operators.
112.6 Qualified Facility Plan Requirements.
112.7 General requirements for Spill Prevention, Control, and Countermeasure Plans.

Subpart B—Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels)

112.8 Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding production facilities) and workover facilities.
112.9 Spill Prevention, Control, and Countermeasure Plan Requirements for onshore oil production facilities (excluding drilling and workover facilities).
112.10 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil drilling and workover facilities.
112.11 Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling, production, or workover facilities.

Subpart C—Requirements for Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and for Vegetable Oils, Including Oils from Seeds, Nuts, Fruits and Kernels

112.12 Spill Prevention, Control, and Countermeasure Plan requirements.
112.13-112.15 [Reserved]

Subpart D—Response Requirements

112.20 Facility response plans.
112.21 Facility response training and drills/exercises.

Appendix A to Part 112—Memorandum of Understanding Between the Secretary of Transportation and the Administrator of the Environmental Protection Agency

Appendix B to Part 112—Memorandum of Understanding Among the Secretary of the Interior, Secretary of Transportation, and Administrator of the Environmental Protection Agency

Appendix C to Part 112—Substantial Harm Criteria

Appendix D to Part 112—Determination of a Worst Case Discharge Planning Volume

Appendix E to Part 112—Determination and Evaluation of Required Response Resources for Facility Response Plans

Appendix F to Part 112—Facility-Specific Response Plan

Appendix G to Part 112—Tier I Qualified Facility SPCC Plan

Authority: 33 U.S.C. 1251 et seq.
Source: 38 FR 34165, Dec. 11, 1973, unless otherwise noted.

Subpart A—Applicability, Definitions, and General Requirements for All Facilities and All Types of Oils
Source: 67 FR 47140, July 17, 2002, unless otherwise noted.

§ 112.1 General applicability.

(a)(1) This part establishes procedures, methods, equipment, and other requirements to prevent the discharge of oil from non-transportation-related onshore and offshore facilities into or upon the navigable waters of the United States or adjoining shorelines, or into or upon the waters of the contiguous zone, or in connection with activities under the Outer Continental Shelf Lands Act or the Deepwater Port Act of 1974, or that may affect natural resources belonging to, appertaining to, or under the exclusive management authority of the United States (including resources under the Magnuson Fishery Conservation and Management Act).

(2) As used in this part, words in the singular also include the plural and words in the masculine gender also include the feminine and vice versa, as the case may require.

(b) Except as provided in paragraph (d) of this section, this part applies to any owner or operator of a non-transportation-related onshore or offshore facility engaged in drilling, producing, gathering, storing, processing, refining, transferring, distributing, using, or consuming oil and oil products, which due to its location, could reasonably be expected to discharge oil in quantities that may be harmful, as described in part 110 of this chapter, into or upon the navigable waters of the United States or adjoining shorelines, or into or upon the waters of the contiguous zone, or in connection with activities under the Outer Continental Shelf Lands Act or the Deepwater Port Act of 1974, or that may affect natural resources belonging to, appertaining to, or under the exclusive management authority of the United States (including resources under the Magnuson Fishery Conservation and Management Act) that has oil in:

(1) Any aboveground container;

(2) Any completely buried tank as defined in §112.2;

(3) Any container that is used for standby storage, for seasonal storage, or for temporary storage, or not otherwise "permanently closed" as defined in §112.2;

(4) Any “bunkered tank” or “partially buried tank” as defined in §112.2, or any container in a vault, each of which is considered an aboveground storage container for purposes of this part.

(c) As provided in section 313 of the Clean Water Act (CWA), departments, agencies, and instrumentalities of the Federal government are subject to this part to the same extent as any person.

(d) Except as provided in paragraph (f) of this section, this part does not apply to:

(1) The owner or operator of any facility, equipment, or operation that is not subject to the jurisdiction of the Environmental Protection Agency (EPA) under section 311(j)(1)(C) of the CWA, as follows:

(i) Any onshore or offshore facility, that due to its location, could not reasonably be expected to have a discharge as described in paragraph (b) of this section. This determination must be based solely upon consideration of the geographical and location aspects of the facility (such as proximity to navigable waters or adjoining shorelines, land contour, drainage, etc.) and must exclude consideration of manmade features such as dikes, equipment or other structures, which may serve to restrain, hinder, contain, or otherwise prevent a discharge as described in paragraph (b) of this section.

(ii) Any equipment, or operation of a vessel or transportation-related onshore or offshore facility which is subject to the authority and control of the U.S. Department of Transportation, as defined in the Memorandum of Understanding between the Secretary of Transportation and the Administrator of EPA, dated November 24, 1971 (appendix A of this part).

(iii) Any equipment, or operation of a vessel or onshore or offshore facility which is subject to the authority and control of the U.S. Department of Transportation or the U.S. Department of the Interior, as defined in the Memorandum of Understanding between the Secretary of Transportation, the Secretary of the Interior, and the Administrator of EPA, dated November 8, 1993 (appendix B of this part).

(2) Any facility which, although otherwise subject to the jurisdiction of EPA, meets both of the following requirements:

(i) The completely buried storage capacity of the facility is 42,000 U.S. gallons or less of oil. For purposes of this exemption, the completely buried storage capacity of a facility excludes the capacity of a completely buried tank, as defined in §112.2, and connected underground piping, underground ancillary equipment, and containment systems, that is currently subject to all of the technical requirements of part 280 of this chapter or all of the technical requirements of a State program approved under part 281 of this chapter, or the capacity of any underground oil storage tanks deferred under 40 CFR part 280 that supply emergency diesel generators at a nuclear power generation facility licensed by the Nuclear Regulatory Commission and subject to any Nuclear Regulatory Commission provision regarding design and quality criteria, including, but not limited to, 10 CFR part 50. The completely buried storage capacity of a facility also excludes the capacity of a container that is "permanently closed," as defined in §112.2 and the capacity of intra-facility gathering lines subject to the regulatory requirements of 49 CFR part 192 or 195.

(ii) The aggregate aboveground storage capacity of the facility is 1,320 U.S. gallons or less of oil. For the purposes of this exemption, only containers with a capacity of 55 U.S. gallons or greater are counted. The aggregate aboveground storage capacity of a facility excludes:

(A) The capacity of a container that is “permanently closed” as defined in §112.2;

(B) The capacity of a “motive power container” as defined in §112.2;

(C) The capacity of hot-mix asphalt or any hot-mix asphalt container;
(D) The capacity of a container for heating oil used solely at a single-family residence;

(E) The capacity of pesticide application equipment and related mix containers.

(F) The capacity of any milk and milk product container and associated piping and appurtenances.

(3) Any offshore oil drilling, production, or workover facility that is subject to the notices and regulations of the Minerals Management Service, as specified in the Memorandum of Understanding between the Secretary of Transportation, the Secretary of the Interior, and the Administrator of EPA, dated November 8, 1993 (appendix B of this part).

(4) Any completely buried storage tank, as defined in §112.2, and connected underground piping, underground ancillary equipment, and containment systems, at any facility, that is subject to all of the technical requirements of part 280 of this chapter or a State program approved under part 281 of this chapter, or any underground oil storage tanks including below-grade vaulted tanks, deferred under 40 CFR part 280, as originally promulgated, that supply emergency diesel generators at a nuclear power generation facility licensed by the Nuclear Regulatory Commission, provided that such a tank is subject to any Nuclear Regulatory Commission provision regarding design and quality criteria, including, but not limited to, 10 CFR part 50. Such emergency generator tanks must be marked on the facility diagram as provided in §112.7(a)(3), if the facility is otherwise subject to this part.

(5) Any container with a storage capacity of less than 55 gallons of oil.

(6) Any facility or part thereof used exclusively for wastewater treatment and not used to satisfy any requirement of this part. The production, recovery, or recycling of oil is not wastewater treatment for purposes of this paragraph.

(7) Any “motive power container,” as defined in §112.2. The transfer of fuel or other oil into a motive power container at an otherwise regulated facility is not eligible for this exemption.

(8) Hot-mix asphalt, or any hot-mix asphalt container.

(9) Any container for heating oil used solely at a single-family residence.

(10) Any pesticide application equipment or related mix containers.

(11) Intra-facility gathering lines subject to the regulatory requirements of 49 CFR part 192 or 195, except that such a line's location must be identified and marked as “exempt” on the facility diagram as provided in §112.7(a)(3), if the facility is otherwise subject to this part.

(12) Any milk and milk product container and associated piping and appurtenances.

(c) This part establishes requirements for the preparation and implementation of Spill Prevention, Control, and Countermeasure (SPCC) Plans. SPCC Plans are designed to complement existing laws, regulations, rules, standards, policies, and procedures pertaining to safety standards, fire prevention, and pollution prevention rules. The purpose of an SPCC Plan is to form a comprehensive Federal/State spill prevention program that minimizes the potential for discharges. The SPCC Plan must address all relevant spill prevention, control, and countermeasures necessary at the specific facility. Compliance with this part does not in any way relieve the owner or operator of an onshore or an offshore facility from compliance with other Federal, State, or local laws.

(f) Notwithstanding paragraph (d) of this section, the Regional Administrator may require that the owner or operator of any facility subject to the jurisdiction of EPA under section 311(j) of the CWA prepare and implement an SPCC Plan, or any applicable part, to carry out the purposes of the CWA.

(1) Following a preliminary determination, the Regional Administrator must provide a written notice to the owner or operator stating the reasons why he must prepare an SPCC Plan, or applicable part. The Regional Administrator must send such notice to the owner or operator by certified mail or by personal delivery. If the owner or operator is a corporation, the Regional Administrator must also mail a copy of such notice to the registered agent, if any and if known, of the corporation in the State where the facility is located.

(2) Within 30 days of receipt of such written notice, the owner or operator may provide information and data and may consult with the Agency about the need to prepare an SPCC Plan, or applicable part.

(3) Within 30 days following the time under paragraph (b)(2) of this section within which the owner or operator may provide information and data and consult with the Agency about the need to prepare an SPCC Plan, or applicable part, the Regional Administrator must make a final determination regarding whether the owner or operator is required to prepare and implement an SPCC Plan, or applicable part. The Regional Administrator must send the final determination to the owner or operator by certified mail or by personal delivery. If the owner or operator is a corporation, the Regional Administrator must also mail a copy of the final determination to the registered agent, if any and if known, of the corporation in the State where the facility is located.

(4) If the Regional Administrator makes a final determination that an SPCC Plan, or applicable part, is necessary, the owner or operator must prepare the Plan, or applicable part, within six months of that final determination and implement the Plan, or applicable part, as soon as possible, but not later than one year after the Regional Administrator has made a final determination.

(5) The owner or operator may appeal a final determination made by the Regional Administrator requiring preparation and implementation of an SPCC Plan, or applicable part, under this paragraph. The owner or operator must make the appeal to the Administrator of EPA within 30 days of receipt of the final determination under paragraph (b)(3) of this section from the Regional Administrator requiring preparation and/or implementation of an SPCC Plan, or applicable part. The owner or operator must send a complete copy of the appeal to the Regional Administrator at the time he makes the appeal to the
Definitions.

For the purposes of this part:

Adverse weather means weather conditions that make it difficult for response equipment and personnel to clean up or remove spilled oil, and that must be considered when identifying response systems and equipment in a response plan for the applicable operating environment. Factors to consider include significant wave height as specified in appendix E to this part (as appropriate), ice conditions, temperatures, weather-related visibility, and currents within the area in which the systems or equipment is intended to function.

Alteration means any work on a container involving cutting, burning, welding, or heating operations that changes the physical dimensions or configuration of the container.

Animal fat means a non-petroleum oil, fat, or grease of animal, fish, or marine mammal origin.

Breakout tank means a container used to relieve surges in an oil pipeline system or to receive and store oil transported by a pipeline for reinjection and continued transportation by pipeline.

Bulk storage container means any container used to store oil. These containers are used for purposes including, but not limited to, the storage of oil prior to use, while being used, or prior to further distribution in commerce. Oil-filled electrical, operating, or manufacturing equipment is not a bulk storage container.

Bunkered tank means a container constructed or placed in the ground by cutting the earth and re-covering the container in a manner that breaks the surrounding natural grade, or that lies above grade, and is covered with earth, sand, gravel, asphalt, or other material. A bunkered tank is considered an aboveground storage container for purposes of this part.

Completely buried tank means any container completely below grade and covered with earth, sand, gravel, asphalt, or other material. Containers in vaults, bunkered tanks, or partially buried tanks are considered aboveground storage containers for purposes of this part.

Complex means a facility possessing a combination of transportation-related and non-transportation-related components that is subject to the jurisdiction of more than one Federal agency under section 311(j) of the CWA.

Contiguous zone means the zone established by the United States under Article 24 of the Convention of the Territorial Sea and Contiguous Zone, that is contiguous to the territorial sea and that extends nine miles seaward from the outer limit of the territorial area.

Contract or other approved means means:

1. A written contractual agreement with an oil spill removal organization that identifies and ensures the availability of the necessary personnel and equipment within appropriate response times; and/or
2. A written certification by the owner or operator that the necessary personnel and equipment resources, owned or operated by the facility owner or operator, are available to respond to a discharge within appropriate response times; and/or
3. Active membership in a local or regional oil spill removal organization that has identified and ensures adequate access through such membership to necessary personnel and equipment to respond to a discharge within appropriate response times in the specified geographic area; and/or
4. Any other specific arrangement approved by the Regional Administrator upon request of the owner or operator.

Discharge includes, but is not limited to, any spilling, leaking, pumping, pouring, emitting, emptying, or dumping of oil, but excludes discharges in compliance with a permit under section 402 of the CWA; discharges resulting from circumstances identified, reviewed, and made a part of the public record with respect to a permit issued or modified under section 402 of the CWA, and subject to a condition in such permit; or continuous or anticipated intermittent discharges from a point source, identified in a permit or permit application under section 402 of the CWA, that are caused by events occurring within the scope of relevant operating or treatment systems. For purposes of this part, the term discharge shall not include any discharge of oil that is authorized by a permit issued under section 13 of the River and Harbor Act of 1899 (33 U.S.C. 407).

Facility means any mobile or fixed, onshore or offshore building, property, parcel, lease, structure, installation, equipment, pipe, or pipeline (other than a vessel or a public vessel) used in oil well drilling operations, oil production, oil refining, oil storage, oil gathering, oil processing, oil transfer, oil distribution, and oil waste treatment, or in which oil is used, as described in appendix A to this part. The boundaries of a facility depend on several site-specific factors, including but not limited to, the ownership or operation of buildings, structures, and equipment on the same site and types of activity at the site. Contiguous or non-contiguous buildings, properties, parcels, leases, structures, installations, pipes, or pipelines under the ownership or operation of the same person may be considered separate facilities. Only this definition governs whether a facility is subject to this part.

Farm means a facility on a tract of land devoted to the production of crops or raising of animals, including fish, which produced and sold, or normally would have produced and sold, $1,000 or more of agricultural products during a year.

Fish and wildlife and sensitive environments means areas that may be identified by their legal designation or by evaluations of Area Committees (for planning) or members of the Federal On-Scene Coordinator's spill response structure (during responses). These areas may include wetlands, National and State parks, critical habitats for endangered or threatened species, wilderness and natural resource areas, marine sanctuaries and estuarine reserves, conservation areas, preserves, wildlife areas, wildlife refuges, wild and scenic rivers, recreational areas, national forests, Federal and State lands that are research national areas, heritage program areas, land trust areas, and historical and archaeological sites and parks. These areas may also include unique habitats such as aquaculture sites and agricultural surface water intakes, bird nesting areas, critical biological resource areas, designated migratory routes, and...
(A) Artificially irrigated areas that would revert to dry land should application of water to that area cease; (ii) The following features:

(C) Ditches that do not flow, either directly or through another water, into a water identified in paragraphs (1)(i) through (iii) of this definition.

(B) Ditches with intermittent flow that are not a relocated tributary, excavated in a tributary, or drain wetlands.

(A) Ditches with ephemeral flow that are not a relocated tributary or excavated in a tributary.

(2) The following are not “waters of the United States” even where they otherwise meet the terms of paragraphs (1)(iv) through (viii) of this definition.

(adjacent water under paragraph (1)(vi), they are an adjacent water and no case-specific significant nexus analysis is required.

with waters identified in paragraph (1)(vi) of this definition when performing a significant nexus analysis. If waters identified in this paragraph are also an adjacent water under paragraph (1)(vi), they are an adjacent water and no case-specific significant nexus analysis is required.

performing a significant nexus analysis. If waters identified in this paragraph are also an adjacent water under paragraph (1)(vi), they are an adjacent water similarly situated and shall be combined, for purposes of a significant nexus analysis, in the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition. The waters identified in each of paragraphs (1)(vii)(A) through (E) of this definition are similar waters;

(vii) All waters in paragraphs (1)(vii)(A) through (E) of this definition where they are determined, on a case-specific basis, to have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition. For waters determined to have a significant nexus, the entire water is a water of the United States if a portion is located within the 100-year floodplain of a water identified in paragraphs (1)(i) through (iii) of this definition or within 4,000 feet of the high tide line or ordinary high water mark. Waters identified in this paragraph shall not be combined with waters identified in paragraph (1)(vi) of this definition when performing a significant nexus analysis. If waters identified in this paragraph are also an adjacent water under paragraph (1)(vi), they are an adjacent water and no case-specific significant nexus analysis is required.

(A) Prairie potholes. Prairie potholes are a complex of glacially formed wetlands, usually occurring in depressions that lack permanent natural outlets, located in the upper Midwest.

(B) Carolina bays and Delmarva bays. Carolina bays and Delmarva bays are ponded, depressional wetlands that occur along the Atlantic coastal plain.

(C) Pocosins. Pocosins are evergreen shrub and tree dominated wetlands found predominantly along the Central Atlantic coastal plain.

(D) Western vernal pools. Western vernal pools are seasonal wetlands located in parts of California and associated with topographic depression, soils with poor drainage, mild, wet winters and hot, dry summers.

(E) Texas coastal prairie wetlands. Texas coastal prairie wetlands are freshwater wetlands that occur as a mosaic of depressions, ridges, intermound flats, and mima mound wetlands located along the Texas Gulf Coast.

(viii) All waters located within the 100-year floodplain of a water identified in paragraphs (1)(i) through (iii) of this definition and all waters located within 4,000 feet of the high tide line or ordinary high water mark of a water identified in paragraphs (1)(i) through (v) of this definition where they are determined on a case-specific basis to have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition. For waters determined to have a significant nexus, the entire water is a water of the United States if a portion is located within the 100-year floodplain of a water identified in paragraphs (1)(i) through (iii) of this definition or within 4,000 feet of the high tide line or ordinary high water mark. Waters identified in this paragraph shall not be combined with waters identified in paragraph (1)(vi) of this definition when performing a significant nexus analysis. If waters identified in this paragraph are also an adjacent water under paragraph (1)(vi), they are an adjacent water and no case-specific significant nexus analysis is required.

(2) The following are not “waters of the United States” even where they otherwise meet the terms of paragraphs (1)(iv) through (viii) of this definition.

(i) The following ditches:

(A) Ditches with ephemeral flow that are not a relocated tributary or excavated in a tributary.

(B) Ditches with intermittent flow that are not a relocated tributary, excavated in a tributary, or drain wetlands.

(C) Ditches that do not flow, either directly or through another water, into a water identified in paragraphs (1)(i) through (iii) of this definition.

(ii) The following features:

(A) Artificially irrigated areas that would revert to dry land should application of water to that area cease;
Functions relevant to the significant nexus evaluation are the following:

(A) Sediment trapping,
(B) Nutrient recycling,
(C) Pollutant trapping, transformation, filtering, and transport,
(D) Runoff attenuation of flood waters,
(E) Runoff storage,
(F) Contribution of flow,
(G) Export of organic matter,

(H) Export of food resources, and

(I) Provision of life cycle dependent aquatic habitat (such as foraging, feeding, nesting, breeding, spawning, or use as a nursery area) for species located in a water identified in paragraphs (1)(i) through (iii) of this definition.

(vi) Ordinary high water mark. The term ordinary high water mark means that line on the shore established by the fluctuations of water and indicated by physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas.

(vii) High tide line. The term high tide line means the line of intersection of the land with the water's surface at the maximum height reached by a rising tide. The high tide line may be determined, in the absence of actual data, by a line of oil or scum along shore objects, a more or less continuous deposit of fine shore or debris on the foreshore or berm, other physical markings or characteristics, vegetation lines, tidal gages, or other suitable means that delineate the general height reached by a rising tide. The line encompasses spring high tides and other high tides that occur with periodic frequency but does not include storm surges in which there is a departure from the normal or predicted reach of the tide due to the piling up of water against a coast by strong winds such as those accompanying a hurricane or other intense storm.

Non-petroleum oil means oil of any kind that is not petroleum-based, including but not limited to: Fats, oils, and greases of animal, fish, or marine mammal origin; and vegetable oils, including oils from seeds, nuts, fruits, and kernels.

Offshore facility means any facility of any kind (other than a vessel or public vessel) located in, on, or under any of the navigable waters of the United States, and any facility of any kind that is subject to the jurisdiction of the United States and is located in, on, or under any other waters.

Oil means oil of any kind or in any form, including, but not limited to: fats, oils, or greases of animal, fish, or marine mammal origin; vegetable oils, including oils from seeds, nuts, fruits, or kernels; and, other oils and greases, including petroleum, fuel oil, sludge, synthetic oils, mineral oils, oil refuse, or oil mixed with wastes other than dredged spoil.

Oil-filled operational equipment means equipment that includes an oil storage container (or multiple containers) in which the oil is present solely to support the function of the apparatus or the device. Oil-filled operational equipment is not considered a bulk storage container, and does not include oil-filled manufacturing equipment (flow-through process). Examples of oil-filled operational equipment include, but are not limited to, hydraulic systems, lubricating the function of the apparatus or the device, gear boxes, machining coolant systems, heat transfer systems, transformers, circuit breakers, switches, and other systems containing oil solely to enable the operation of the device.

Oil Spill Removal Organization means an entity that provides oil spill response resources, and includes any for-profit or not-for-profit contractor, cooperative, or in-house response resources that have been established in a geographic area to provide required response resources.

Onshore facility means any facility of any kind located in, on, or under any land within the United States, other than submerged lands.

Owner or operator means any person owning or operating an onshore facility or an offshore facility, and in the case of any abandoned offshore facility, the person who owned or operated or maintained the facility immediately prior to such abandonment.

Partially buried tank means a storage container that is partially inserted or constructed in the ground, but not entirely below grade, and not completely covered with earth, sand, gravel, asphalt, or other material. A partially buried tank is considered an aboveground storage container for purposes of this part.

Permanently closed means any container or facility for which:

(1) All liquid and sludge has been removed from each container and connecting line; and

(2) All connecting lines and piping have been disconnected from the container and blanked off, all valves (except for ventilation valves) have been closed and locked, and conspicuous signs have been posted on each container stating that it is a permanently closed container and noting the date of closure.

Person includes an individual, firm, corporation, association, or partnership.

Petroleum oil means petroleum in any form, including but not limited to crude oil, fuel oil, mineral oil, sludge, oil refuse, and refined products.

Produced water container means a storage container at an oil production facility used to store the produced water after initial oil/water separation, and prior to reinjection, beneficial reuse, discharge, or transfer for disposal.

Production facility means all structures (including but not limited to wells, platforms, or storage facilities), piping (including but not limited to flowlines or intra-facility gathering lines), or equipment (including but not limited to workover equipment, separation equipment, or auxiliary non-transportation-related equipment) used in the production, extraction, recovery, lifting, stabilization, separation or treating of oil (including condensate), or associated storage or measurement, and is located in an oil or gas field, at a facility. This definition governs whether such structures, piping, or equipment are subject to a specific section of this part.

Regional Administrator means the Regional Administrator of the Environmental Protection Agency, in and for the Region in which the facility is located.

Repair means any work necessary to maintain or restore a container to a condition suitable for safe operation, other than that necessary for ordinary, day-to-day maintenance to maintain the functional integrity of the container and that does not weaken the container.

Spill Prevention, Control, and Countermeasure Plan; SPCC Plan, or Plan means the document required by § 112.3 that details the equipment, workforce, procedures, and steps to prevent, control, and provide adequate countermeasures to a discharge.

Storage capacity of a container means the shell capacity of the container.

Transportation-related and non-transportation-related, as applied to an onshore or offshore facility, are defined in the Memorandum of Understanding between the Secretary of Transportation and the Administrator of the Environmental Protection Agency, dated November 24, 1971, (appendix A of this part).

United States means the States, the District of Columbia, the Commonwealth of Puerto Rico, the Commonwealth of the Northern Mariana Islands, Guam, American Samoa, the U.S. Virgin Islands, and the Pacific Island Governments.
§ 112.3 Requirement to prepare and implement a Spill Prevention, Control, and Countermeasure Plan.

The owner or operator of an onshore or offshore facility subject to this section must prepare in writing and implement a Spill Prevention Control and Countermeasure Plan (hereafter “SPCC Plan” or “Plan”), in accordance with § 112.7 and any other applicable section of this part.

(a)(1) Except as otherwise provided in this section, if your facility, or mobile or portable facility, was in operation on or before August 16, 2002, you must maintain your Plan, but must amend it, if necessary to ensure compliance with this part, and implement the amended Plan no later than November 10, 2010. If such a facility becomes operational after August 16, 2002, through November 10, 2011, and could reasonably be expected to have a discharge as described in § 112.1(b), you must prepare and implement a Plan on or before November 10, 2011. If such a facility (excluding oil production facilities) becomes operational after November 10, 2011, and could reasonably be expected to have a discharge as described in § 112.1(b), you must prepare and implement a Plan before you begin operations. You are not required to prepare a new Plan each time you move a mobile or portable facility to a new site; the Plan may be general. When you move the mobile or portable facility, you must locate and install it using the discharge prevention practices outlined in the Plan for the facility. The Plan is applicable only while the mobile or portable facility is in a fixed (non-transportation) operating mode.

(2) If your drilling, production or workover facility, including a mobile or portable facility, is offshore or has an offshore component; or your onshore facility is required to have and submit a Facility Response Plan pursuant to 40 CFR 112.20(a), and was in operation on or before August 16, 2002, you must maintain your Plan, but must amend it, if necessary to ensure compliance with this part, and implement the amended Plan no later than November 10, 2010. If such a facility becomes operational after August 16, 2002, through November 10, 2010, and could reasonably be expected to have a discharge as described in § 112.1(b), you must prepare and implement a Plan on or before November 10, 2010. If such a facility (excluding oil production facilities) becomes operational after November 10, 2010, and could reasonably be expected to have a discharge as described in § 112.1(b), you must prepare and implement a Plan before you begin operations. You are not required to prepare a new Plan each time you move a mobile or portable facility to a new site; the Plan may be general. When you move the mobile or portable facility, you must locate and install it using the discharge prevention practices outlined in the Plan for the facility. The Plan is applicable only while the mobile or portable facility is in a fixed (non-transportation) operating mode.

(b) If your oil production facility as described in paragraph (a)(1) of this section becomes operational after November 10, 2011, or as described in paragraph (a)(2) of this section becomes operational after November 10, 2010, and could reasonably be expected to have a discharge as described in § 112.1(b), you must prepare and implement a Plan within six months after you begin operations.

(c) [Reserved]

(d) Except as provided in § 112.6, a licensed Professional Engineer must review and certify a Plan for it to be effective to satisfy the requirements of this part.

(1) By means of this certification the Professional Engineer attests:

(i) That he is familiar with the requirements of this part;

(ii) That he or his agent has visited and examined the facility;

(iii) That the Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards, and with the requirements of this part;

(iv) That procedures for required inspections and testing have been established; and

(v) That the Plan is adequate for the facility.

(vi) That, if applicable, for a produced water container subject to § 112.9(c)(6), any procedure to minimize the amount of free-phase oil is designed to reduce the accumulation of free-phase oil and the procedures and frequency for required inspections, maintenance and testing have been established and are described in the Plan.

(2) Such certification shall in no way relieve the owner or operator of a facility of his duty to prepare and fully implement such Plan in accordance with the requirements of this part.

(e) If you are the owner or operator of a facility for which a Plan is required under this section, you must:

(1) Maintain a complete copy of the Plan at the facility if the facility is normally attended at least four hours per day, or at the nearest field office if the facility is not so attended, and

(2) Have the Plan available to the Regional Administrator for on-site review during normal working hours.

(f) Extension of time. (1) The Regional Administrator may authorize an extension of time for the preparation and full implementation of a Plan, or any amendment thereto, beyond the time permitted for the preparation, implementation, or amendment of a Plan under this part, when he finds that the owner or
operator of a facility subject to this section, cannot fully comply with the requirements as a result of either nonavailability of qualified personnel, or delays in construction or equipment delivery beyond the control and without the fault of such owner or operator or his agents or employees.

(2) If you are an owner or operator seeking an extension of time under paragraph (f)(1) of this section, you may submit a written extension request to the Regional Administrator. Your request must include:

(i) A full explanation of the cause for any such delay and the specific aspects of the Plan affected by the delay;

(ii) A full discussion of actions being taken or contemplated to minimize or mitigate such delay; and

(iii) A proposed time schedule for the implementation of any corrective actions being taken or contemplated, including interim dates for completion of tests or studies, installation and operation of any necessary equipment, or other preventive measures. In addition you may present additional oral or written statements in support of your extension request.

(3) The submission of a written extension request under paragraph (f)(2) of this section does not relieve you of your obligation to comply with the requirements of this part. The Regional Administrator may request a copy of your Plan to evaluate the extension request. When the Regional Administrator authorizes an extension of time for particular equipment or other specific aspects of the Plan, such extension does not affect your obligation to comply with the requirements related to other equipment or other specific aspects of the Plan for which the Regional Administrator has not expressly authorized an extension.

(g) Qualified Facilities. The owner or operator of a qualified facility as defined in this subparagraph may self-certify his facility's Plan, as provided in § 112.6. A qualified facility is one that meets the following Tier I or Tier II qualified facility criteria:

(1) A Tier I qualified facility meets the qualification criteria in paragraph (g)(2) of this section and has no individual aboveground oil storage container with a capacity greater than 5,000 U.S. gallons.

(2) A Tier II qualified facility is one that has had no single discharge as described in § 112.1(b) exceeding 1,000 U.S. gallons or no two discharges as described in § 112.1(b) each exceeding 42 U.S. gallons within any twelve month period in the three years prior to the SPCC Plan self-certification date, or since becoming subject to this part if the facility has been in operation for less than three years (other than discharges as described in § 112.1(b) that are the result of natural disasters, acts of war, or terrorism), and has an aggregate aboveground oil storage capacity of 10,000 U.S. gallons or less.

§ 112.4 Amendment of Spill Prevention, Control, and Countermeasure Plan by Regional Administrator.

If you are the owner or operator of a facility subject to this part, you must:

(a) Notwithstanding compliance with § 112.3, whenever your facility has discharged more than 1,000 U.S. gallons of oil in a single discharge as described in § 112.1(b), or discharged more than 42 U.S. gallons of oil in each of two discharges as described in § 112.1(b), occurring within any twelve month period, submit the following information to the Regional Administrator within 60 days from the time the facility becomes subject to this section:

(1) Name of the facility;

(2) Your name;

(3) Location of the facility;

(4) Maximum storage or handling capacity of the facility and normal daily throughput;

(5) Corrective action and countermeasures you have taken, including a description of equipment repairs and replacements;

(6) An adequate description of the facility, including maps, flow diagrams, and topographical maps, as necessary;

(7) The cause of such discharge as described in § 112.1(b), including a failure analysis of the system or subsystem in which the failure occurred;

(8) Additional preventive measures you have taken or contemplated to minimize the possibility of recurrence; and

(9) Such other information as the Regional Administrator may reasonably require pertinent to the Plan or discharge.

(b) Take no action under this section until it applies to your facility. This section does not apply until the expiration of the time permitted for the initial preparation and implementation of the Plan under § 112.3, but not including any amendments to the Plan.

(c) Send to the appropriate agency or agencies in charge of oil pollution control activities in the State in which the facility is located a complete copy of all information you provided to the Regional Administrator under paragraph (a) of this section. Upon receipt of the information such State agency or agencies may conduct a review and make recommendations to the Regional Administrator as to further procedures, methods, equipment, and other requirements necessary to prevent and to contain discharges from your facility.

(d) Amend your Plan, if after review by the Regional Administrator of the information you submit under paragraph (a) of this section, or submission of information to EPA by the State agency under paragraph (c) of this section, or after on-site review of your Plan, the Regional Administrator requires that you do so. The Regional Administrator may require you to amend your Plan if he finds that it does not meet the requirements of this part or that amendment is necessary to prevent and to contain discharges from your facility.

(e) Act in accordance with this paragraph when the Regional Administrator proposes by certified mail or by personal delivery that you amend your SPCC Plan. If the owner or operator is a corporation, he must also notify by mail the registered agent of such corporation, if any and if known, in the State in which the facility is located. The Regional Administrator must specify the terms of such proposed amendment. Within 30 days from receipt of such notice, you may submit written information, views, and arguments on the proposed amendment. After considering all relevant material presented, the Regional Administrator must either notify you of any amendment required or rescind the notice. You must amend your Plan as required within 30 days after such notice, unless the
Regional Administrator, for good cause, specifies another effective date. You must implement the amended Plan as soon as possible, but not later than six months after you amend your Plan, unless the Regional Administrator specifies another date.

(f) If you appeal a decision made by the Regional Administrator requiring an amendment to an SPCC Plan, send the appeal to the EPA Administrator in writing within 30 days of receipt of the notice from the Regional Administrator requiring the amendment under paragraph (e) of this section. You must send a complete copy of the appeal to the Regional Administrator at the time you make the appeal. The appeal must contain a clear and concise statement of the issues and points of fact in the case. It may also contain additional information from you, or from any other person. The EPA Administrator may request additional information from you, or from any other person. The EPA Administrator must render a decision within 60 days of receiving the appeal and must notify you of his decision.

§ 112.5 Amendment of Spill Prevention, Control, and Countermeasure Plan by owners or operators.

If you are the owner or operator of a facility subject to this part, you must:

(a) Amend the SPCC Plan for your facility in accordance with the general requirements in §112.7, and with any specific section of this part applicable to your facility, when there is a change in the facility design, construction, operation, or maintenance that materially affects its potential for a discharge as described in §112.1(b). Examples of changes that may require amendment of the Plan include, but are not limited to: commissioning or decommissioning containers; replacement, reconstruction, or movement of containers; reconstruction, replacement, or installation of piping systems; construction or demolition that might alter secondary containment structures; changes of product or service; or revision of standard operation or maintenance procedures at a facility. An amendment made under this section must be prepared within six months, and implemented as soon as possible, but not later than six months following preparation of the amendment.

(b) Notwithstanding compliance with paragraph (a) of this section, complete a review and evaluation of the SPCC Plan at least once every five years from the date your facility becomes subject to this part; or, if your facility was in operation on or before August 16, 2002, five years from the date your last review was required under this part. As a result of this review and evaluation, you must amend your SPCC Plan within six months of the review to include more effective prevention and control technology if the technology has been field-proven at the time of the review and will significantly reduce the likelihood of a discharge as described in §112.1(b) from the facility. You must implement any amendment as soon as possible, but not later than six months following preparation of any amendment. You must document your completion of the review and evaluation, and must sign a statement as to whether you will amend the Plan, either at the beginning or end of the Plan or in a log or an appendix to the Plan. The following words will suffice, “I have completed review and evaluation of the SPCC Plan for (name of facility) on (date), and will (will not) amend the Plan as a result.”

(c) Except as provided in §112.6, have a Professional Engineer certify any technical amendments to your Plan in accordance with §112.3(d).

§ 112.6 Qualified Facilities Plan Requirements.

Qualified facilities meeting the Tier I applicability criteria in §112.3(g)(1) are subject to the requirements in paragraph (a) of this section. Qualified facilities meeting the Tier II applicability criteria in §112.3(g)(2) are subject to the requirements in paragraph (b) of this section.

(a) Tier I Qualified Facilities —(1) Preparation and Self-Certification of the Plan. If you are an owner or operator of a facility that meets the Tier I qualified facility criteria in §112.3(g)(1), you must either: comply with the requirements of paragraph (a)(3) of this section; or prepare and implement a Plan meeting requirements of paragraph (b) of this section; or prepare and implement a Plan meeting the general Plan requirements in §112.7 and applicable requirements in subparts B and C, including having the Plan certified by a Professional Engineer as required under §112.3(d). If you do not follow the appendix G template, you must prepare an equivalent Plan that meets all of the applicable requirements listed in this part, and you must supplement it with a section cross-referencing the location of requirements listed in this part and the equivalent requirements in the other prevention plan. To complete the template in appendix G, you must certify that:

(i) You are familiar with the applicable requirements of 40 CFR part 112;
(ii) You have visited and examined the facility;
(iii) You prepared the Plan in accordance with accepted and sound industry practices and standards;
(iv) You have established procedures for required inspections and testing in accordance with industry inspection and testing standards or recommended practices;
(v) You will fully implement the Plan;
(vi) The facility meets the qualification criteria in §112.3(g)(1);
(vii) The Plan does not deviate from any requirement of this part as allowed by §112.7(a)(2) and 112.7(d) or include measures pursuant to §112.9(c)(6) for produced water containers and any associated piping; and
(viii) The Plan and individual(s) responsible for implementing this Plan have the approval of management, and the facility owner or operator has committed the necessary resources to fully implement this Plan.

(2) Technical Amendments. You must certify any technical amendments to your Plan in accordance with paragraph (a)(1) of this section when there is a change in the facility design, construction, operation, or maintenance that affects its potential for a discharge as described in §112.1(b). If the facility change results in the facility no longer meeting the Tier I qualifying criteria in §112.3(g)(1) because an individual oil storage container capacity exceeds 5,000 U.S. gallons or the facility capacity exceeds 10,000 U.S. gallons in aggregate aboveground storage capacity, within six months following preparation of the amendment, you must either:

(i) Prepare and implement a Plan in accordance with §112.6(b) if you meet the Tier II qualified facility criteria in §112.3(g)(2); or
(ii) Prepare and implement a Plan in accordance with the general Plan requirements in §112.7, and applicable requirements in subparts B and C, including having the Plan certified by a Professional Engineer as required under §112.3(d).
Plan Template and Applicable Requirements. Prepare and implement an SPCC Plan that meets the following requirements under § 112.7 and in subparts B and C of this part: introductory paragraph of §§ 112.7(a)(3)(i), 112.7(a)(3)(iv), 112.7(a)(3)(vi), 112.7(a)(4), 112.7(a)(5), 112.7(c), 112.7(e), 112.7(f), 112.7(g), 112.7(h)(1), 112.8(b)(2), 112.8(c)(1), 112.8(c)(3), 112.8(c)(4), 112.8(c)(5), 112.8(c)(6), 112.8(c)(10), 112.8(d)(4), 112.9(b), 112.9(c)(1), 112.9(c)(2), 112.9(c)(3), 112.9(c)(4), 112.9(c)(5), 112.9(d)(1), 112.9(d)(3), 112.9(d)(4), 112.10(b), 112.10(c), 112.10(d), 112.12(b)(1), 112.12(b)(2), 112.12(c)(1), 112.12(c)(3), 112.12(c)(4), 112.12(c)(5), 112.12(c)(6), 112.12(c)(10), and 112.12(d)(4). The template in appendix G to this part has been developed to meet the requirements of 40 CFR part 112 and, when completed and signed by the owner or operator, may be used as the SPCC Plan. Additionally, you must meet the following requirements:

(i) Failure analysis, in lieu of the requirements in § 112.7(b). Where experience indicates a reasonable potential for equipment failure (such as loading or unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of discharge), include in your Plan a prediction of the direction and total quantity of oil which could be discharged from the facility as a result of each type of major equipment failure.

(ii) Bulk storage container secondary containment, in lieu of the requirements in §§ 112.8(c)(2) and (c)(11) and 112.12(c)(2) and (c)(11). Construct all bulk storage container installations (except mobile refuelers and other non-transportation-related tank trucks), including mobile or portable oil storage containers, so that you provide a secondary means of containment for the entire capacity of the largest single container plus additional capacity to contain precipitation. Dikes, containment curbs, and pits are commonly employed for this purpose. You may also use an alternative system consisting of a drainage trench enclosure that must be arranged so that any discharge will terminate and be safely confined in a catchment basin or holding pond. Position or locate mobile or portable oil storage containers to prevent a discharge as described in § 112.1(b).

(iii) Overfill prevention, in lieu of the requirements in §§ 112.8(c)(8) and 112.12(c)(8). Ensure that each container is provided with a system or documented procedure to prevent overfills of the container, describe the system or procedure in the SPCC Plan and regularly test to ensure proper operation or efficacy.

(b) Tier II Qualified Facilities — (1) Preparation and Self-Certification of Plan. If you are the owner or operator of a facility that meets the Tier II qualified facility criteria in § 112.3(g)(2), you may choose to self-certify your Plan. You must certify in the Plan that:

(i) You are familiar with the requirements of this part;

(ii) You have visited and examined the facility;

(iii) The Plan has been prepared in accordance with accepted and sound industry practices and standards, and with the requirements of this part;

(iv) Procedures for required inspections and testing have been established;

(v) You will fully implement the Plan;

(vi) The facility meets the qualification criteria set forth under § 112.3(g)(2);

(vii) The Plan has been prepared in accordance with accepted and sound industry practices and standards, and with the requirements of this part;

(viii) The Plan and individual(s) responsible for implementing the Plan have the full approval of management and the facility owner or operator has committed the necessary resources to fully implement the Plan.

(2) Technical Amendments. If you self-certify your Plan pursuant to paragraph (b)(1) of this section, you must certify any technical amendments to your Plan in accordance with paragraph (b)(1) of this section when there is a change in the facility design, construction, operation, or maintenance that affects its potential for a discharge as described in § 112.3(b), except:

(i) If a Professional Engineer certifies a portion of your Plan in accordance with paragraph (b)(4) of this section, and the technical amendment affects this portion of the Plan, you must have the amended provisions of your Plan certified by a Professional Engineer in accordance with paragraph (b)(4)(ii) of this section.

(ii) If the change is such that the facility no longer meets the Tier II qualifying criteria in § 112.3(g)(2) because it exceeds 10,000 U.S. gallons in aggregate aboveground storage capacity you must, within six months following the change, prepare and implement a Plan in accordance with the general Plan requirements in § 112.7 and the applicable requirements in subparts B and C of this part, including having the Plan certified by a Professional Engineer as required under § 112.3(d).

(3) Applicable Requirements. Except as provided in this paragraph, your self-certified SPCC Plan must comply with § 112.7 and the applicable requirements in subparts B and C of this part:

(i) Environmental Equivalence. Your Plan may not include alternate methods which provide environmental equivalence pursuant to § 112.7(a)(2), unless each alternate method has been reviewed and certified in writing by a Professional Engineer, as provided in paragraph (b)(4) of this section.

(ii) Impracticability. Your Plan may not include any determinations that secondary containment is impracticable and provisions in lieu of secondary containment pursuant to § 112.7(d), unless each such determination and alternate measure has been reviewed and certified in writing by a Professional Engineer, as provided in paragraph (b)(4) of this section.

(iii) Produced Water Containers. Your Plan may not include any alternative procedures for skimming produced water containers in lieu of sized secondary containment pursuant to § 112.9(c)(6), unless they have been reviewed and certified in writing by a Professional Engineer, as provided in paragraph (b)(4) of this section.

(4) Professional Engineer Certification of Portions of a Qualified Facility's Self-Certified Plan.

(i) As described in paragraph (b)(3) of this section, the facility owner or operator may not self-certify alternative measures allowed under § 112.7(a)(2) or (d), that are included in the facility's Plan. Such measures must be reviewed and certified, in writing, by a licensed Professional Engineer. For each alternative measure allowed under § 112.7(a)(2), the Plan must be accompanied by a written statement by a Professional Engineer that states the reason for noncompliance and describes the alternative method and how it provides equivalent environmental protection in accordance with § 112.7(a)(2). For each determination of impracticability of secondary containment pursuant to § 112.7(d), the Plan must clearly explain why secondary containment measures are not practicable at this facility and provide the alternative measures required in § 112.7(d) in lieu of secondary containment. By certifying each measure allowed under § 112.7(a)(2) and (d), the Professional Engineer attests:
(A) That he is familiar with the requirements of this part;

(B) That he or his agent has visited and examined the facility; and

(C) That the alternative method of environmental equivalence in accordance with § 112.7(a)(2) or the determination of impracticability and alternative measures in accordance with § 112.7(d) is consistent with good engineering practice, including consideration of applicable industry standards, and with the requirements of this part.

(ii) As described in paragraph (b)(3) of this section, the facility owner or operator may not self-certify measures as described in § 112.9(c)(6) for produced water containers and any associated piping. Such measures must be reviewed and certified, in writing, by a licensed Professional Engineer, in accordance with § 112.3(d)(1)(vi).

(iii) The review and certification by the Professional Engineer under this paragraph is limited to the alternative method which achieves equivalent environmental protection pursuant to § 112.7(a)(2); to the impracticability determination and measures in lieu of secondary containment pursuant to § 112.7(d); or the measures pursuant to § 112.9(c)(6) for produced water containers and any associated piping and appurtenances downstream from the container.

§ 112.7 General requirements for Spill Prevention, Control, and Countermeasure Plans.

If you are the owner or operator of a facility subject to this part, you must prepare a Plan in accordance with good engineering practices. The Plan must have the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan. You must prepare the Plan in writing. If you do not follow the sequence specified in this section for the Plan, you must prepare an equivalent Plan acceptable to the Regional Administrator that meets all of the applicable requirements listed in this part, and you must supplement it with a section cross-referencing the location of requirements listed in this part and the equivalent requirements in the other prevention plan. If the Plan calls for additional facilities or procedures, methods, or equipment not yet fully operational, you must discuss these items in separate paragraphs, and must explain separately the details of installation and operational start-up. As detailed elsewhere in this section, you must also:

(a)(1) Include a discussion of your facility's conformance with the requirements listed in this part.

(2) Comply with all applicable requirements listed in this part. Except as provided in § 112.6, your Plan may deviate from the requirements in paragraphs (g), (h)(2) and (3), and (i) of this section and the requirements in subparts B and C of this part, except the secondary containment requirements in paragraphs (e) and (h)(1) of this section, and §§ 112.8(c)(2), 112.8(e)(11), 112.9(c)(2), 112.9(d)(3), 112.10(c), 112.12(c)(2), and 112.12(c)(11), where applicable to a specific facility, if you provide equivalent environmental protection by some other means of spill prevention, control, or countermeasure. Where your Plan does not conform to the applicable requirements in paragraphs (g), (h)(2) and (3), and (i) of this section, or the requirements of subparts B and C of this part, except the secondary containment requirements in paragraphs (c) and (h)(1) of this section, and §§ 112.8(c)(2), 112.8(e)(11), 112.9(c)(2), 112.9(d)(3), 112.10(c), 112.12(c)(2), and 112.12(c)(11), where applicable to a specific facility, you may require that you amend your Plan, following the procedures in § 112.4(d) and (e).

(3) Describe in your Plan the physical layout of the facility and include a facility diagram, which must mark the location and contents of each fixed oil storage container and the storage area where mobile or portable containers are located. The facility diagram must identify the location of and mark as "exempt" underground tanks that are otherwise exempted from the requirements of this part under § 112.1(d)(4). The facility diagram must also include all transfer stations and connecting pipes, including intra-facility gathering lines that are otherwise exempted from the requirements of this part under § 112.1(d)(11). You must also address in your Plan:

(i) The type of oil in each fixed container and its storage capacity. For mobile or portable containers, either provide the type of oil and storage capacity for each container or provide an estimate of the potential number of mobile or portable containers, the types of oil, and anticipated storage capacities;

(ii) Discharge prevention measures including procedures for routine handling of products (loading, unloading, and facility transfers, etc.);

(iii) Discharge or drainage controls such as secondary containment around containers and other structures, equipment, and procedures for the control of a discharge;

(iv) Countermeasures for discharge discovery, response, and cleanup (both the facility's capability and those that might be required of a contractor);

(v) Methods of disposal of recovered materials in accordance with applicable legal requirements; and

(vi) Contact list and phone numbers for the facility response coordinator, National Response Center, cleanup contractors with whom you have an agreement for response, and all appropriate Federal, State, and local agencies who must be contacted in case of a discharge as described in § 112.1(b).

(4) Unless you have submitted a response plan under § 112.20, provide information and procedures in your Plan to enable a person reporting a discharge as described in § 112.1(b) to relate information on the exact address or location and phone number of the facility; the date and time of the discharge, the type of material discharged; estimates of the total quantity discharged; estimates of the quantity discharged as described in § 112.1(b); the source of the discharge; a description of all affected media; the cause of the discharge; any damages or injuries caused by the discharge; actions being used to stop, remove, and mitigate the effects of the discharge; whether an evacuation may be needed; and, the names of individuals and/or organizations who have also been contacted.

(5) Unless you have submitted a response plan under § 112.20, organize portions of the Plan describing procedures you will use when a discharge occurs in a way that will make them readily usable in an emergency, and include appropriate supporting material as appendices.

(b) Where experience indicates a reasonable potential for equipment failure (such as loading or unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of a discharge), include in your Plan a prediction of the direction, rate of flow, and total quantity of oil which could discharge from the facility as a result of each type of major equipment failure.

(c) Provide appropriate containment and/or diversionary structures or equipment to prevent a discharge as described in § 112.1(b), except as provided in paragraph (k) of this section for qualified oil-filled operational equipment, and except as provided in § 112.9(d)(3) for flowlines and intra-facility gathering...
lines at an oil production facility. The entire containment system, including walls and floor, must be capable of containing oil and must be constructed so that any discharge from a primary containment system, such as a tank, will not escape the containment system before cleanup occurs. In determining the method, design, and capacity for secondary containment, you need only to address the typical failure mode, and the most likely quantity of oil that would be discharged. Secondary containment may be either active or passive in design. At a minimum, you must use one of the following prevention systems or its equivalent:

(1) For onshore facilities:
 (i) Dikes, berms, or retaining walls sufficiently impervious to contain oil;
 (ii) Curbing or drip pans;
 (iii) Sumps and collection systems;
 (iv) Culverting, gutters, or other drainage systems;
 (v) Weirs, booms, or other barriers;
 (vi) Spill diversion ponds;
 (vii) Retention ponds; or
 (viii) Sorbent materials.

(2) For offshore facilities:
 (i) Curbing or drip pans; or
 (ii) Sumps and collection systems.

(d) Provided your Plan is certified by a licensed Professional Engineer under § 112.3(d), or, in the case of a qualified facility that meets the criteria in § 112.3(g), the relevant sections of your Plan are certified by a licensed Professional Engineer under § 112.6(d), if you determine that the installation of any of the structures or pieces of equipment listed in paragraphs (c) and (h)(1) of this section, and §§ 112.8(c)(2), 112.8(c)(11), 112.9(c)(2), 112.10(c), 112.12(c)(2), and 112.12(c)(11) to prevent a discharge as described in § 112.1(b) from any onshore or offshore facility is not practicable, you must clearly explain in your Plan why such measures are not practicable; for bulk storage containers, conduct both periodic integrity testing of the containers and periodic integrity and leak testing of the valves and piping; and, unless you have submitted a response plan under § 112.20, provide in your Plan the following:

(1) An oil spill contingency plan following the provisions of part 109 of this chapter.

(2) A written commitment of manpower, equipment, and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful.

(e) Inspections, tests, and records. Conduct inspections and tests required by this part in accordance with written procedures that you or the certifying engineer develop for the facility. You must keep these written procedures and a record of the inspections and tests, signed by the appropriate supervisor or inspector, with the SPCC Plan for a period of three years. Records of inspections and tests kept under usual and customary business practices will suffice for purposes of this paragraph.

(f) Personnel, training, and discharge prevention procedures.

(1) At a minimum, train your oil-handling personnel in the operation and maintenance of equipment to prevent discharges; discharge procedure protocols; applicable pollution control laws, rules, and regulations; general facility operations; and, the contents of the facility SPCC Plan.

(2) Designate a person at each applicable facility who is accountable for discharge prevention and who reports to facility management.

(3) Schedule and conduct discharge prevention briefings for your oil-handling personnel at least once a year to assure adequate understanding of the SPCC Plan for that facility. Such briefings must highlight and describe known discharges as described in § 112.1(b) and the SPCC Plan.

(g) Security (excluding oil production facilities). Describe in your Plan how you secure and control access to the oil handling, processing and storage areas; secure master flow and drain valves; prevent unauthorized access to starter controls on oil pumps; secure out-of-service and loading/unloading connections of oil pipelines; and address the appropriateness of security lighting to both prevent acts of vandalism and assist in the discovery of oil discharges.

(h) Facility tank car and tank truck loading/unloading rack (excluding offshore facilities).

(1) Where loading/unloading rack drainage does not flow into a catchment basin or treatment facility designed to handle discharges, use a quick drainage system for tank car or tank truck loading/unloading racks. You must design any containment system to hold at least the maximum capacity of any single compartment of a tank car or tank truck loaded or unloaded at the facility.

(2) Provide an interlocked warning light or physical barrier system, warning signs, wheel chocks or vehicle brake interlock system in the area adjacent to a loading/unloading rack, to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines.

(3) Prior to filling and departure of any tank car or tank truck, closely inspect for discharges the lowermost drain and all outlets of such vehicles, and if necessary, ensure that they are tightened, adjusted, or replaced to prevent liquid discharge while in transit.

(i) If a field-constructed aboveground container undergoes a repair, alteration, reconstruction, or a change in service that might affect the risk of a discharge or failure due to brittle fracture or other catastrophe, or has discharged oil or failed due to brittle fracture failure or other catastrophe, evaluate the container for risk of discharge or failure due to brittle fracture or other catastrophe, and as necessary, take appropriate action.

(j) In addition to the minimal prevention standards listed under this section, include in your Plan a complete discussion of conformance with the applicable requirements and other effective discharge prevention and containment procedures listed in this part or any applicable more stringent State rules, regulations, and guidelines.
(k) Qualified Oil-filled Operational Equipment. The owner or operator of a facility with oil-filled operational equipment that meets the qualification criteria in paragraph (k)(1) of this sub-section may choose to implement for this qualified oil-filled operational equipment the alternate requirements as described in paragraph (k)(2) of this sub-section in lieu of general secondary containment required in paragraph (c) of this section.

(1) Qualification Criteria—Reportable Discharge History: The owner or operator of a facility that has had no single discharge as described in §112.1(b) from any oil-filled operational equipment exceeding 1,000 U.S. gallons or no two discharges as described in §112.1(b) from any oil-filled operational equipment each exceeding 42 U.S. gallons within any twelve month period in the three years prior to the SPCC Plan certification date, or since becoming subject to this part if the facility has been in operation for less than three years (other than oil discharges as described in §112.1(b) that are the result of natural disasters, acts of war or terrorism); and

(2) Alternative Requirements to General Secondary Containment. If secondary containment is not provided for qualified oil-filled operational equipment pursuant to paragraph (c) of this section, the owner or operator of a facility with qualified oil-filled operational equipment must:

(i) Establish and document the facility procedures for inspections or a monitoring program to detect equipment failure and/or a discharge; and

(ii) Unless you have submitted a response plan under §112.20, provide in your Plan the following:

(A) An oil spill contingency plan following the provisions of part 109 of this chapter.

(B) A written commitment of manpower, equipment, and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful.

Subpart B—Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels)

Source: 67 FR 47146, July 17, 2002, unless otherwise noted.

§ 112.8 Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding production facilities).

If you are the owner or operator of an onshore facility (excluding a production facility), you must:

(a) Meet the general requirements for the Plan listed under §112.7, and the specific discharge prevention and containment procedures listed in this section.

(b) Facility drainage. (1) Restrain drainage from diked storage areas by valves to prevent a discharge into the drainage system or facility effluent treatment system, except where facility systems are designed to control such discharge. You may empty diked areas by pumps or ejectors; however, you must manually activate these pumps or ejectors and must inspect the condition of the accumulation before starting, to ensure no oil will be discharged.

(2) Use valves of manual, open-and-closed design, for the drainage of diked areas. You may not use flapper-type drain valves to drain diked areas. If your facility drainage drains directly into a watercourse and not into an on-site wastewater treatment plant, you must inspect and may drain uncontaminated retained stormwater, as provided in paragraphs (c)(3)(ii), (iii), and (iv) of this section.

(3) Design facility drainage systems from undiked areas with a potential for a discharge (such as where piping is located outside containment walls or where tank truck discharges may occur outside the loading area) to flow into ponds, lagoons, or catchment basins designed to retain oil or return it to the facility. You must not locate catchment basins in areas subject to periodic flooding.

(4) If facility drainage is not engineered as in paragraph (b)(3) of this section, equip the final discharge of all ditches inside the facility with a diversion system that would, in the event of an uncontrolled discharge, retain oil in the facility.

(5) Where drainage waters are treated in more than one treatment unit and such treatment is continuous, and pump transfer is needed, provide two “lift” pumps and permanently install at least one of the pumps. Whatever techniques you use, you must engineer facility drainage systems to prevent a discharge as described in §112.1(b) in case there is an equipment failure or human error at the facility.

(c) Bulk storage containers. (1) Not use a container for the storage of oil unless its material and construction are compatible with the material stored and conditions of storage such as pressure and temperature.

(2) Construct all bulk storage tank installations (except mobile refuelers and other non-transportation-related tank trucks) so that you provide a secondary means of containment for the entire capacity of the largest single container and sufficient freeboard to contain precipitation. You must ensure that diked areas are sufficiently impervious to contain discharged oil. Dikes, containment curbs, and pits are commonly employed for this purpose. You may also use an alternative system consisting of a drainage trench enclosure that must be arranged so that any discharge will terminate and be safely confined in a facility catchment basin or holding pond.

(3) Not allow drainage of uncontaminated rainwater from the diked area into a storm drain or discharge of an effluent into an open watercourse, lake, or pond, bypassing the facility treatment system unless you:

(i) Normally keep the bypass valve sealed closed.

(ii) Inspect the retained rainwater to ensure that its presence will not cause a discharge as described in §112.1(b).

(iii) Open the bypass valve and reseal it following drainage under responsible supervision; and

(iv) Keep adequate records of such events, for example, any records required under permits issued in accordance with §§122.41(j)(2) and 122.41(m)(3) of this chapter.

(4) Protect any completely buried metallic storage tank installed on or after January 10, 1974 from corrosion by coatings or cathodic protection compatible with local soil conditions. You must regularly leak test such completely buried metallic storage tanks.

(5) Not use partially buried or bunkered metallic tanks for the storage of oil, unless you protect the buried section of the tank from corrosion. You must protect
(b) Meet the general requirements for the Plan listed under § 112.7, and the specific discharge prevention and containment procedures listed under this section.

(2) Except as described in paragraph (c)(5) of this section for flow-through process vessels and paragraph (c)(6) of this section for produced water containers and any associated piping and appurtenances downstream from the container, construct all tank battery, separation, and treating facility installations, so that you provide a secondary means of containment for the entire capacity of the largest single container and sufficient freeboard to contain precipitation. You must safely confine drainage from undiked areas in a catchment basin or holding pond.
(3) Except as described in paragraph (c)(5) of this section for flow-through process vessels and paragraph (c)(6) of this section for produced water containers
and any associated piping and appurtenances downstream from the container, periodically and upon a regular schedule visually inspect each container of oil
for deterioration and maintenance needs, including the foundation and support of each container that is on or above the surface of the ground.

(4) Engineer or update new and old tank battery installations in accordance with good engineering practice to prevent discharges. You must provide at least
one of the following:

(i) Container capacity adequate to assure that a container will not overfill if a pumper/reader is delayed in making regularly scheduled rounds.

(ii) Overflow equalizing lines between containers so that a full container can overflow to an adjacent container.

(iii) Vacuum protection adequate to prevent container collapse during a pipeline run or other transfer of oil from the container.

(iv) High level sensors to generate and transmit an alarm signal to the computer where the facility is subject to a computer production control system.

(5) Flow-through process vessels. The owner or operator of a facility with flow-through process vessels may choose to implement the alternate requirements
as described below in lieu of sized secondary containment required in paragraphs (c)(2) and (c)(3) of this section.

(i) Periodically and on a regular schedule visually inspect and/or test flow-through process vessels and associated components (such as dump valves) for leaks,
corrosion, or other conditions that could lead to a discharge as described in § 112.1(b).

(ii) Take corrective action or make repairs to flow-through process vessels and any associated components as indicated by regularly scheduled visual
inspections, tests, or evidence of an oil discharge.

(iii) Promptly remove or initiate actions to stabilize and remediate any accumulations of oil discharges associated with flow-through process vessels.

(iv) If your facility discharges more than 1,000 U.S. gallons of oil in a single discharge as described in § 112.1(b), or discharges more than 42 U.S. gallons of
oil in each of two discharges as described in § 112.1(b) within any twelve month period, from flow-through process vessels (excluding discharges that are the
result of natural disasters, acts of war, or terrorism) then you must, within six months from the time the facility becomes subject to this paragraph, ensure that
all flow-through process vessels subject to this subpart comply with § 112.9(c)(2) and (c)(3).

(6) Produced water containers. For each produced water container, comply with § 112.9(c)(1) and (c)(4); and § 112.9(c)(2) and (c)(3), or comply with the
provisions of the following paragraphs (c)(6)(i) through (v):

(i) Implement, on a regular schedule, a procedure for each produced water container that is designed to separate the free-phase oil that accumulates on the
surface of the produced water. Include in the Plan a description of the procedures, frequency, and amount of free-phase oil expected to be maintained inside the
container, and a Professional Engineer certification in accordance with § 112.3(d)(1)(vi). Maintain records of such events in accordance with § 112.7(e).
Records kept under usual and customary business practices will suffice for purposes of this paragraph. If this procedure is not implemented as described in the
Plan or no records are maintained, then you must comply with § 112.9(c)(2) and (c)(3).

(ii) On a regular schedule, visually inspect and/or test the produced water container and associated piping for leaks, corrosion, or other conditions that could
lead to a discharge as described in § 112.1(b) in accordance with good engineering practice.

(iii) Take corrective action or make repairs to the produced water container and any associated piping as indicated by regularly scheduled visual inspections,
tests, or evidence of an oil discharge.

(iv) Promptly remove or initiate actions to stabilize and remediate any accumulations of oil discharges associated with the produced water container.

(v) If your facility discharges more than 1,000 U.S. gallons of oil in a single discharge as described in § 112.1(b), or discharges more than 42 U.S. gallons of
oil in each of two discharges as described in § 112.1(b) within any twelve month period from a produced water container subject to this subpart (excluding
discharges that are the result of natural disasters, acts of war, or terrorism) then you must, within six months from the time the facility becomes subject to this
paragraph, ensure that all produced water containers subject to this subpart comply with § 112.9(c)(2) and (c)(3).

(d) Facility transfer operations, oil production facility. (1) Periodically and upon a regular schedule inspect all aboveground valves and piping associated
with transfer operations for the general condition of flange joints, valve glands and bodies, drip pans, pipe supports, pumping well rod stuffing boxes,
bleeder and gauge valves, and other such items.

(2) Inspect saltwater (oil field brine) disposal facilities often, particularly following a sudden change in atmospheric temperature, to detect possible system
upsets capable of causing a discharge.

(3) For flowlines and intra-facility gathering lines that are not provided with secondary containment in accordance with § 112.7(c), unless you have submitted
a response plan under § 112.20, provide in your Plan the following:

(i) An oil spill contingency plan following the provisions of part 109 of this chapter.

(ii) A written commitment of manpower, equipment, and materials required to expeditiously control and remove any quantity of oil discharged that might be
harmful.

(4) Prepare and implement a written program of flowline/intra-facility gathering line maintenance. The maintenance program must address your procedures to:

(i) Ensure that flowlines and intra-facility gathering lines and associated valves and equipment are compatible with the type of production fluids, their
potential corrosivity, volume, and pressure, and other conditions expected in the operational environment.

(ii) Visually inspect and/or test flowlines and intra-facility gathering lines and associated appurtenances on a periodic and regular schedule for leaks, oil
discharges, corrosion, or other conditions that could lead to a discharge as described in § 112.1(b). For flowlines and intra-facility gathering lines that are not
provided with secondary containment in accordance with § 112.7(c), the frequency and type of testing must allow for the implementation of a contingency
plan as described under part 109 of this chapter.

(iii) Take corrective action or make repairs to any flowlines and intra-facility gathering lines and associated appurtenances as indicated by regularly scheduled
visual inspections, tests, or evidence of a discharge.
If you are the owner or operator of an onshore oil drilling and workover facility, you must:

(a) Meet the general requirements listed under § 112.7, and also meet the specific discharge prevention and containment procedures listed under this section.

(b) Position or locate mobile drilling or workover equipment so as to prevent a discharge as described in § 112.1(b).

(c) Provide catchment basins or diversion structures to intercept and contain discharges of fuel, crude oil, or oily drilling fluids.

(d) Install a blowout prevention (BOP) assembly and well control system before drilling below any casing string or during workover operations. The BOP assembly and well control system must be capable of controlling any well-head pressure that may be encountered while that BOP assembly and well control system are on the well.

§ 112.11 Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling, production, or workover facilities.

If you are the owner or operator of an offshore oil drilling, production, or workover facility, you must:

(a) Meet the general requirements listed under § 112.7, and also meet the specific discharge prevention and containment procedures listed under this section.

(b) Use oil drainage collection equipment to prevent and control small oil discharges around pumps, glands, valves, flanges, expansion joints, hoses, drain lines, separators, treaters, tanks, and associated equipment. You must control and direct facility drains toward a central collection sump to prevent the facility from having a discharge as described in § 112.1(b). Where drains and sumps are not practicable, you must remove oil contained in collection equipment as often as necessary to prevent overflow.

(c) For facilities employing a sump system, provide adequately sized sump and drains and make available a spare pump to remove liquid from the sump and assure that oil does not escape. You must employ a regularly scheduled preventive maintenance inspection and testing program to assure reliable operation of the liquid removal system and pump start-up device. Redundant automatic sump pumps and control devices may be required on some installations.

(d) At facilities with areas where separators and treaters are equipped with dump valves which predominantly fail in the closed position and where pollution risk is high, specially equip the facility to prevent the discharge of oil. You must prevent the discharge of oil by:

1. Extending the flare line to a diked area if the separator is near shore;
2. Equipping the separator with a high liquid level sensor that will automatically shut in wells producing to the separator; or
3. Installing parallel redundant dump valves.

(e) Equip atmospheric storage or surge containers with high liquid level sensing devices that activate an alarm or control the flow, or otherwise prevent discharges.

(f) Equip pressure containers with high and low pressure sensing devices that activate an alarm or control the flow.

(g) Equip containers with suitable corrosion protection.

(h) Prepare and maintain at the facility a written procedure within the Plan for inspecting and testing pollution prevention equipment and systems.

(i) Conduct testing and inspection of the pollution prevention equipment and systems at the facility on a scheduled periodic basis, commensurate with the complexity, conditions, and circumstances of the facility and any other appropriate regulations. You must use simulated discharges for testing and inspecting human and equipment pollution control and countermeasure systems.

(j) Describe in detailed records surface and subsurface well shut-in valves and devices in use at the facility for each well sufficiently to determine their method of activation or control, such as pressure differential, change in fluid or flow conditions, combination of pressure and flow, manual or remote control mechanisms.

(k) Install a BOP assembly and well control system during workover operations and before drilling below any casing string. The BOP assembly and well control system must be capable of controlling any well-head pressure that may be encountered while the BOP assembly and well control system are on the well.

(l) Equip all manifolds (headers) with check valves on individual flowlines.

(m) Equip the flowline with a high pressure sensing device and shut-in valve at the wellhead if the shut-in well pressure is greater than the working pressure of the flowline and manifold valves up to and including the header valves. Alternatively you may provide a pressure relief system for flowlines.

(n) Protect all piping appurtenant to the facility from corrosion, such as with protective coatings or cathodic protection.

(o) Adequately protect sub-marine piping appurtenant to the facility against environmental stresses and other activities such as fishing operations.

(p) Maintain sub-marine piping appurtenant to the facility in good operating condition at all times. You must periodically and according to a schedule inspect or test such piping for failures. You must document and keep a record of such inspections or tests at the facility.

Subpart C—Requirements for Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and for Vegetable Oils, including Oils from Seeds, Nuts, Fruits, and Kernels

Source: 67 FR 57149, July 17, 2002, unless otherwise noted.
§ 112.12 Spill Prevention, Control, and Countermeasure Plan requirements.

If you are the owner or operator of an onshore facility, you must:

(a) Meet the general requirements for the Plan listed under § 112.7, and the specific discharge prevention and containment procedures listed in this section.

(b) Facility drainage. (1) Restrain drainage from diked storage areas by valves to prevent a discharge into the drainage system or facility effluent treatment system, except where facility systems are designed to control such discharge. You may empty diked areas by pumps or ejectors; however, you must manually activate these pumps or ejectors and must inspect the condition of the accumulation before starting, to ensure no oil will be discharged.

(2) Use valves of manual, open-and-closed design, for the drainage of diked areas. You may not use flapper-type drain valves to drain diked areas. If your facility drainage drains directly into a watercourse and not into an on-site wastewater treatment plant, you must inspect and may drain uncontaminated retained stormwater, subject to the requirements of paragraphs (c)(3)(i), (ii), (iii), and (iv) of this section.

(3) Design facility drainage systems from undiked areas with a potential for a discharge (such as where piping is located outside containment walls or where tank truck discharges may occur outside the loading area) to flow into ponds, lagoons, or catchment basins designed to retain oil or return it to the facility. You must not locate catchment basins in areas subject to periodic flooding.

(4) If facility drainage is not engineered as in paragraph (b)(3) of this section, equip the final discharge of all ditches inside the facility with a diversion system that would, in the event of an uncontrolled discharge, retain oil in the facility.

(5) Where drainage waters are treated in more than one treatment unit and such treatment is continuous, and pump transfer is needed, provide two “lift” pumps and permanently install at least one of the pumps. Whatever techniques you use, you must engineer facility drainage systems to prevent a discharge as described in § 112.1(b) in case there is an equipment failure or human error at the facility.

(c) Bulk storage containers. (1) Not use a container for the storage of oil unless its material and construction are compatible with the material stored and conditions of storage such as pressure and temperature.

(2) Construct all bulk storage tank installations (except mobile refuelers and other non-transportation-related tank trucks) so that you provide a secondary means of containment for the entire capacity of the largest single container and sufficient freeboard to contain precipitation. You must ensure that diked areas are sufficiently impervious to contain discharged oil. Dikes, containment curbs, and pits are commonly employed for this purpose. You may also use an alternative system consisting of a drainage trench enclosure that must be arranged so that any discharge will terminate and be safely confined in a facility catchment basin or holding pond.

(3) Not allow drainage of uncontaminated rainwater from the diked area into a storm drain or discharge of an effluent into an open watercourse, lake, or pond, bypassing the facility treatment system unless you:

(i) Normally keep the bypass valve sealed closed.

(ii) Inspect the retained rainwater to ensure that its presence will not cause a discharge as described in § 112.1(b).

(iii) Open the bypass valve and reseal it following drainage under responsible supervision; and

(iv) Keep adequate records of such events, for example, any records required under permits issued in accordance with §§ 122.41(j)(2) and 122.41(m)(3) of this chapter.

(4) Protect any completely buried metallic storage tank installed on or after January 10, 1974 from corrosion by coatings or cathodic protection compatible with local soil conditions. You must regularly leak test such completely buried metallic storage tanks.

(5) Not use partially buried or bunkered metallic tanks for the storage of oil, unless you protect the buried section of the tank from corrosion. You must protect partially buried and bunkered tanks from corrosion by coatings or cathodic protection compatible with local soil conditions.

(6) Bulk storage container inspections.

(i) Except for containers that meet the criteria provided in paragraph (c)(6)(ii) of this section, test or inspect each aboveground container for integrity on a regular schedule and whenever you make material repairs. You must determine, in accordance with industry standards, the appropriate qualifications for personnel performing tests and inspections, the frequency and type of testing and inspections, which take into account container size, configuration, and design (such as containers that are: shop-built, field-erected, skid-mounted, elevated, equipped with a liner, double-walled, or partially buried). Examples of these integrity tests include, but are not limited to: Visual inspection, hydrostatic testing, radiographic testing, ultrasonic testing, acoustic emissions testing, or other systems of non-destructive testing. You must keep comparison records and you must also inspect the container's supports and foundations. In addition, you must frequently inspect the outside of the container for signs of deterioration, discharges, or accumulation of oil inside diked areas. Records of inspections and tests kept under usual and customary business practices satisfy the recordkeeping requirements of this paragraph.

(ii) For bulk storage containers that are subject to 21 CFR part 110, are elevated, constructed of austenitic stainless steel, have no external insulation, and are shop-fabricated, conduct formal visual inspection on a regular schedule. In addition, you must frequently inspect the outside of the container for signs of deterioration, discharges, or accumulation of oil inside diked areas. You must determine and document in the Plan the appropriate qualifications for personnel performing tests and inspections. Records of inspections and tests kept under usual and customary business practices satisfy the recordkeeping requirements of this paragraph (c)(6).

(7) Control leakage through defective internal heating coils by monitoring the steam return and exhaust lines for contamination from internal heating coils that discharge into an open watercourse, or pass the steam return or exhaust lines through a settling tank, skimmer, or other separation or retention system.

(8) Engineer or update each container installation in accordance with good engineering practice to avoid discharges. You must provide at least one of the following devices:

(i) High liquid level alarms with an audible or visual signal at a constantly attended operation or surveillance station. In smaller facilities an audible air vent may suffice.

(ii) High liquid level pump cutoff devices set to stop flow at a predetermined container content level.
§§ 112.13-112.15 [Reserved]

Subpart D—Response Requirements

§ 112.20 Facility response plans.

(a) The owner or operator of any non-transportation-related onshore facility that, because of its location, could reasonably be expected to cause substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines shall prepare and submit a facility response plan to the Regional Administrator, according to the following provisions:

(i) For the owner or operator of a facility in operation on or before February 18, 1993 who is required to prepare and submit a response plan under 33 U.S.C. 1321(j)(5), the Oil Pollution Act of 1990 (Pub. L. 101-380, 33 U.S.C. 2701 et seq.) requires the submission of a response plan that satisfies the requirements of 33 U.S.C. 1321(j)(5) no later than February 18, 1993.

(ii) The owner or operator of an existing facility that was in operation on or before February 18, 1993 who submitted a response plan by February 18, 1993 shall revise the response plan to satisfy the requirements of this section and resubmit the response plan or updated portions of the response plan to the Regional Administrator by February 18, 1995.

(iii) The owner or operator of an existing facility in operation on or before February 18, 1993 who failed to submit a response plan by February 18, 1993 shall prepare and submit a response plan that satisfies the requirements of this section to the Regional Administrator before August 30, 1994.

(b) The owner or operator of a facility in operation on or after August 30, 1994 that satisfies the criteria in paragraph (f)(1) of this section or that is notified by the Regional Administrator pursuant to paragraph (b) of this section shall prepare and submit a facility response plan that satisfies the requirements of this section to the Regional Administrator.

(i) For a facility that commenced operations after February 18, 1993 but prior to August 30, 1994, and is required to prepare and submit a response plan based on the criteria in paragraph (f)(1) of this section, the owner or operator shall submit the response plan or updated portions of the response plan, along with a completed version of the response plan cover sheet contained in appendix F to this part, to the Regional Administrator prior to August 30, 1994.

(ii) For a newly constructed facility that commences operations after August 30, 1994, and is required to prepare and submit a response plan based on the criteria in paragraph (f)(1) of this section, the owner or operator shall submit the response plan, along with a completed version of the response plan cover sheet contained in appendix F to this part, to the Regional Administrator prior to the start of operations (adjustments to the response plan to reflect changes that occur at the facility during the start-up phase of operations must be submitted to the Regional Administrator after an operational trial period of 60 days).

(iii) For a facility required to prepare and submit a response plan after August 30, 1994, as a result of a planned change in design, construction, operation, or maintenance that renders the facility subject to the criteria in paragraph (f)(1) of this section, the owner or operator shall submit the response plan, along with a completed version of the response plan cover sheet contained in appendix F to this part, to the Regional Administrator within six months of the unplanned event or
(3) In the event the owner or operator of a facility that is required to prepare and submit a response plan uses an alternative formula that is comparable to one contained in appendix C to this part to evaluate the criterion in paragraph (f)(1)(ii)(B) or (f)(1)(ii)(C) of this section, the owner or operator shall attach documentation to the response plan cover sheet contained in appendix F to this part that demonstrates the reliability and analytical soundness of the alternative formula.

(4) Preparation and submission of response plans — Animal fat and vegetable oil facilities. The owner or operator of any non-transportation-related facility that handles, stores, or transports animal fats and vegetable oils must prepare and submit a facility response plan as follows:

(i) Facilities with approved plans. The owner or operator of a facility with a facility response plan that has been approved under paragraph (c) of this section by July 31, 2000 need not prepare or submit a revised plan except as otherwise required by paragraphs (b), (c), or (d) of this section.

(ii) Facilities with plans that have been submitted to the Regional Administrator. Except for facilities with approved plans as provided in paragraph (a)(4)(i) of this section, the owner or operator of a facility that has submitted a response plan to the Regional Administrator prior to July 31, 2000 must review the plan to determine if it meets or exceeds the applicable provisions of this part. An owner or operator need not prepare or submit a new plan if the existing plan meets or exceeds the applicable provisions of this part. If the plan does not meet or exceed the applicable provisions of this part, the owner or operator must prepare and submit a new plan by September 28, 2000.

(iii) Newly regulated facilities. The owner or operator of a newly constructed facility that commences operation after July 31, 2000 must prepare and submit a plan to the Regional Administrator in accordance with paragraph (a)(2)(ii) of this section. The plan must meet or exceed the applicable provisions of this part. The owner or operator of an existing facility that must prepare and submit a plan after July 31, 2000 as a result of a planned or unplanned change in facility characteristics that causes the facility to become regulated under paragraph (f)(1) of this section, must prepare and submit a plan to the Regional Administrator in accordance with paragraph (a)(2)(iii) or (iv) of this section, as appropriate. The plan must meet or exceed the applicable provisions of this part.

(iv) Facilities amending existing plans. The owner or operator of a facility submitting an amended plan in accordance with paragraph (d) of this section after July 31, 2000, including plans that had been previously approved, must also review the plan to determine if it meets or exceeds the applicable provisions of this part. If the plan does not meet or exceed the applicable provisions of this part, the owner or operator must revise and resubmit revised portions of an amended plan to the Regional Administrator in accordance with paragraph (d) of this section, as appropriate. The plan must meet or exceed the applicable provisions of this part.

(b) The Regional Administrator may at any time require the owner or operator of any non-transportation-related onshore facility to prepare and submit a facility response plan under this section after considering the factors in paragraph (f)(2) of this section. If such a determination is made, the Regional Administrator shall notify the facility owner or operator in writing and shall provide a basis for the determination. If the Regional Administrator in writing notifies the owner or operator in writing of the requirement to prepare and submit a response plan under this section, the owner or operator of the facility shall submit the response plan to the Regional Administrator within six months of receipt of such written notification.

(2) The Regional Administrator shall review plans submitted by such facilities to determine whether the facility could, because of its location, reasonably be expected to cause significant and substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines.

(c) The Regional Administrator shall determine whether a facility could, because of its location, reasonably be expected to cause significant and substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines, based on the factors in paragraph (f)(3) of this section. If such a determination is made, the Regional Administrator shall notify the owner or operator of the facility in writing and:

(1) Promptly review the facility response plan;

(2) Require amendments to any response plan that does not meet the requirements of this section;

(3) Approve any response plan that meets the requirements of this section; and

(4) Review each response plan periodically thereafter on a schedule established by the Regional Administrator provided that the period between plan reviews does not exceed five years.

(d)(1) The owner or operator of a facility for which a response plan is required under this part shall revise and resubmit revised portions of the response plan within 60 days of each facility change that materially may affect the response to a worst case discharge, including:

(i) A change in the facility's configuration that materially alters the information included in the response plan;

(ii) A change in the type of oil handled, stored, or transferred that materially alters the required response resources;

(iii) A material change in capabilities of the oil spill removal organization(s) that provide equipment and personnel to respond to discharges of oil described in paragraph (h)(5) of this section;

(iv) A material change in the facility's spill prevention and response equipment or emergency response procedures; and

(v) Any other changes that materially affect the implementation of the response plan.

(2) Except as provided in paragraph (d)(1) of this section, amendments to personnel and telephone number lists included in the response plan and a change in the oil spill removal organization(s) that does not result in a material change in support capabilities do not require approval by the Regional Administrator. Facility owners or operators shall provide a copy of such changes to the Regional Administrator as the revisions occur.

(3) The owner or operator of a facility that submits changes to a response plan as provided in paragraph (d)(1) or (d)(2) of this section shall provide the EPA-issued facility identification number (where one has been assigned) with the changes.

(4) The Regional Administrator shall review for approval changes to a response plan submitted pursuant to paragraph (d)(1) of this section for a facility determined pursuant to paragraph (f)(3) of this section to have the potential to cause significant and substantial harm to the environment.

(e) If the owner or operator of a facility determines pursuant to paragraph (a)(2) of this section that the facility could not, because of its location, reasonably be expected to cause substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines, the owner or operator shall
(f)(1) A facility could, because of its location, reasonably be expected to cause substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines pursuant to paragraph (a)(2) of this section, if it meets any of the following criteria applied in accordance with the flowchart contained in appendix C-I to appendix C to this part:

(i) The facility transfers oil over water to or from vessels and has a total oil storage capacity greater than or equal to 42,000 gallons; or

(ii) The facility's total oil storage capacity is greater than or equal to 1 million gallons, and one of the following is true:
 (A) The facility does not have secondary containment for each aboveground storage area sufficiently large to contain the capacity of the largest aboveground oil storage tank within each storage area plus sufficient freeboard to allow for precipitation;
 (B) The facility is located at a distance (as calculated using the appropriate formula in appendix C to this part or a comparable formula) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III of the “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see appendix E to this part, section 13, for availability) and the applicable Area Contingency Plan prepared pursuant to section 311(j)(4) of the Clean Water Act;
 (C) The facility is located at a distance (as calculated using the appropriate formula in appendix C to this part or a comparable formula) such that a discharge from the facility would shut down a public drinking water intake; or
 (D) The facility has had a reportable oil discharge in an amount greater than or equal to 10,000 gallons within the last 5 years.

(2) To determine whether a facility could, because of its location, reasonably be expected to cause substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines pursuant to paragraph (b) of this section, the Regional Administrator shall consider the following:

(A) Type of transfer operation;
(B) Oil storage capacity;
(C) Lack of secondary containment;
(D) Proximity to fish and wildlife and sensitive environments and other areas determined by the Regional Administrator to possess ecological value;
(E) Proximity to drinking water intakes;
(F) Spill history; and
(G) Other site-specific characteristics and environmental factors that the Regional Administrator determines to be relevant to protecting the environment from harm by discharges of oil into or on navigable waters or adjoining shorelines.

(ii) Any person, including a member of the public or any representative from a Federal, State, or local agency who believes that a facility subject to this section could, because of its location, reasonably be expected to cause substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines may petition the Regional Administrator to determine whether the facility meets the criteria in paragraph (f)(2)(i) of this section. Such petition shall include a discussion of how the factors in paragraph (f)(2)(i) of this section apply to the facility in question. The RA shall consider such petitions and respond in an appropriate amount of time.

(3) To determine whether a facility could, because of its location, reasonably be expected to cause significant and substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines, the Regional Administrator may consider the factors in paragraph (f)(2) of this section as well as the following:

(i) Frequency of past discharges;
(ii) Proximity to navigable waters;
(iii) Age of oil storage tanks; and
(iv) Other facility-specific and Region-specific information, including local impacts on public health.

(g)(1) All facility response plans shall be consistent with the requirements of the National Oil and Hazardous Substance Pollution Contingency Plan (40 CFR part 300) and applicable Area Contingency Plans prepared pursuant to section 311(j)(4) of the Clean Water Act. The facility response plan should be coordinated with the local emergency response plan developed by the local emergency planning committee under section 303 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (42 U.S.C. 11001 et seq.). Upon request, the owner or operator should provide a copy of the facility response plan to the local emergency planning committee or State emergency response commission.

(2) The owner or operator shall review relevant portions of the National Oil and Hazardous Substances Pollution Contingency Plan and applicable Area Contingency Plan annually and, if necessary, revise the facility response plan to ensure consistency with these plans.

(3) The owner or operator shall review and update the facility response plan periodically to reflect changes at the facility.

(h) A response plan shall follow the format of the model facility-specific response plan included in appendix F to this part, unless you have prepared an equivalent response plan acceptable to the Regional Administrator to meet State or other Federal requirements. A response plan that does not follow the specified format in appendix F to this part shall have an emergency response action plan as specified in paragraphs (h)(1) of this section and be supplemented with a cross-reference section to identify the location of the elements listed in paragraphs (h)(2) through (h)(10) of this section. To meet the requirements of this part, a response plan shall address the following elements, as further described in appendix F to this part:

(1) Emergency response action plan. The response plan shall include an emergency response action plan in the format specified in paragraphs (h)(1)(i) through (viii) of this section that is maintained in the front of the response plan, or as a separate document accompanying the response plan, and that includes...
Facility information. The response plan shall identify and discuss the location and type of the facility, the identity and tenure of the present owner and operator, and the identity of the qualified individual identified in paragraph (h)(1) of this section.

Information about emergency response. The response plan shall include:

(i) A worst case discharge, as calculated using the appropriate worksheet in appendix D to this part. In cases where the Regional Administrator determines that the worst case discharge, as calculated in paragraph (f)(1)(ii) of this section to determine whether a facility could, because of its location, reasonably be expected to cause substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines.

(ii) Evidence of contracts or other approved means for ensuring the availability of such personnel and equipment;

(iii) The identity and telephone number of individuals or organizations to be contacted in the event of a discharge so that immediate communications between the qualified individual identified in paragraph (h)(1) of this section and the appropriate Federal official and the persons providing response personnel and equipment can be ensured;

(iv) A description of information to pass to response personnel in the event of a reportable discharge;

(v) A description of response personnel capabilities, including the duties of persons at the facility during a response action and their response times and qualifications;

(vi) Plans for evacuation of the facility and a reference to community evacuation plans, as appropriate;

(vii) A description of immediate measures to secure the source of the discharge, and to provide adequate containment and drainage of discharged oil; and

(viii) A diagram of the facility.

Response planning levels. The response plan shall include discussion of specific planning scenarios for:

(i) A worst case discharge, as calculated using the appropriate worksheet in appendix D to this part. In cases where the Regional Administrator determines that
the worst case discharge volume calculated by the facility is not appropriate, the Regional Administrator may specify the worst case discharge amount to be used for response planning at the facility. For complexes, the worst case planning quantity shall be the larger of the amounts calculated for each component of the facility;

(ii) A discharge of 2,100 gallons or less, provided that this amount is less than the worst case discharge amount. For complexes, this planning quantity shall be the larger of the amounts calculated for each component of the facility; and

(iii) A discharge greater than 2,100 gallons and less than or equal to 36,000 gallons or 10 percent of the capacity of the largest tank at the facility, whichever is less, provided that this amount is less than the worst case discharge amount. For complexes, this planning quantity shall be the larger of the amounts calculated for each component of the facility.

(6) Discharge detection systems. The response plan shall describe the procedures and equipment used to detect discharges.

(7) Plan implementation. The response plan shall describe:

(i) Response actions to be carried out by facility personnel or contracted personnel under the response plan to ensure the safety of the facility and to mitigate or prevent discharges described in paragraph (h)(5) of this section or the substantial threat of such discharges;

(ii) A description of the equipment to be used for each scenario;

(iii) Plans to dispose of contaminated cleanup materials; and

(iv) Measures to provide adequate containment and drainage of discharged oil.

(8) Self-inspection, drills/exercises, and response training. The response plan shall include:

(i) A checklist and record of inspections for tanks, secondary containment, and response equipment;

(ii) A description of the drill/exercise program to be carried out under the response plan as described in §112.21;

(iii) A description of the training program to be carried out under the response plan as described in §112.21; and

(iv) Logs of discharge prevention meetings, training sessions, and drills/exercises. These logs may be maintained as an annex to the response plan.

(9) Diagrams. The response plan shall include site plan and drainage plan diagrams.

(10) Security systems. The response plan shall include a description of facility security systems.

(11) Response plan cover sheet. The response plan shall include a completed response plan cover sheet provided in section 2.0 of appendix F to this part.

(i) In the event the owner or operator of a facility does not agree with the Regional Administrator's determination that the facility could, because of its location, reasonably be expected to cause substantial harm or significant and substantial harm to the environment by discharging oil into or on the navigable waters or adjoining shorelines, or that amendments to the facility response plan are necessary prior to approval, such as changes to the worst case discharge planning volume, the owner or operator may submit a request for reconsideration to the Regional Administrator and provide additional information and data in writing to support the request. The request and accompanying information must be submitted to the Regional Administrator within 60 days of receipt of notice of the Regional Administrator's original decision. The Regional Administrator shall consider the request and render a decision as rapidly as practicable.

(2) In the event the owner or operator of a facility believes a change in the facility's classification status is warranted because of an unplanned event or change in the facility's characteristics (i.e., substantial harm or significant and substantial harm), the owner or operator may submit a request for reconsideration to the Regional Administrator and provide additional information and data in writing to support the request. The Regional Administrator shall consider the request and render a decision as rapidly as practicable.

(3) After a request for reconsideration under paragraph (i)(1) or (i)(2) of this section has been denied by the Regional Administrator, an owner or operator may appeal a determination made by the Regional Administrator. The appeal shall be made to the EPA Administrator and shall be made in writing within 60 days of receipt of the decision from the Regional Administrator that the request for reconsideration was denied. A complete copy of the appeal must be sent to the Regional Administrator at the time the appeal is made. The appeal shall contain a clear and concise statement of the issues and points of fact in the case. It also may contain additional information from the owner or operator, or from any other person. The EPA Administrator may request additional information from the owner or operator, or from any other person. The EPA Administrator shall render a decision as rapidly as practicable and shall notify the owner or operator of the decision.

§112.21 Facility response training and drills/exercises.

(a) The owner or operator of any facility required to prepare a facility response plan under §112.20 shall develop and implement a facility response training program and a drill/exercise program that satisfy the requirements of this section. The owner or operator shall describe the programs in the response plan as provided in §112.20(h)(8).

(b) The facility owner or operator shall develop a facility response training program to train those personnel involved in oil spill response activities. It is recommended that the training program be based on the USCG's Training Elements for Oil Spill Response, as applicable to facility operations. An alternative program can also be acceptable subject to approval by the Regional Administrator.

(1) The owner or operator shall be responsible for the proper instruction of facility personnel in the procedures to respond to discharges of oil and in applicable oil spill response laws, rules, and regulations.

(2) Training shall be functional in nature according to job tasks for both supervisory and non-supervisory operational personnel.

(3) Trainers shall develop specific lesson plans on subject areas relevant to facility personnel involved in oil spill response and cleanup.

(c) The facility owner or operator shall develop a program of facility response drills/exercises, including evaluation procedures. A program that follows the
National Preparedness for Response Exercise Program (PREP) (see appendix E to this part, section 13, for availability) will be deemed satisfactory for purposes of this section. An alternative program can also be acceptable subject to approval by the Regional Administrator.

[59 FR 34101, July 1, 1994, as amended at 65 FR 40798, June 30, 2000]

Pt. 112, App. A

Appendix A to Part 112—Memorandum of Understanding Between the Secretary of Transportation and the Administrator of the Environmental Protection Agency

section ii—definitions

The Environmental Protection Agency and the Department of Transportation agree that for the purposes of Executive Order 11548, the term:

(1) Non-transportation-related onshore and offshore facilities means:

(A) Fixed onshore and offshore oil well drilling facilities including all equipment and appurtenances related thereto used in drilling operations for exploratory or development wells, but excluding any terminal facility, unit or process integrally associated with the handling or transferring of oil in bulk to or from a vessel.

(B) Mobile onshore and offshore oil well drilling platforms, barges, trucks, or other mobile facilities including all equipment and appurtenances related thereto when such mobile facilities are fixed in position for the purpose of drilling operations for exploratory or development wells, but excluding any terminal facility, unit or process integrally associated with the handling or transferring of oil in bulk to or from a vessel.

(C) Fixed onshore and offshore oil production structures, platforms, derricks, and rigs including all equipment and appurtenances related thereto, as well as completed wells and the wellhead separators, oil separators, and storage facilities used in the production of oil, but excluding any terminal facility, unit or process integrally associated with the handling or transferring of oil in bulk to or from a vessel.

(D) Mobile onshore and offshore oil production facilities including all equipment and appurtenances related thereto as well as completed wells and wellhead equipment, piping from wellheads to oil separators, oil separators, and storage facilities used in the production of oil when such mobile facilities are fixed in position for the purpose of oil production operations, but excluding any terminal facility, unit or process integrally associated with the handling or transferring of oil in bulk to or from a vessel.

(E) Oil refining facilities including all equipment and appurtenances related thereto as well as in-plant processing units, storage units, piping, drainage systems and waste treatment units used in the refining of oil, but excluding any terminal facility, unit or process integrally associated with the handling or transferring of oil in bulk to or from a vessel.

(F) Oil storage facilities including all equipment and appurtenances related thereto as well as fixed bulk plant storage, terminal oil storage facilities, consumer storage, pumps and drainage systems used in the storage of oil, but excluding in-line or breakout storage tanks needed for the continuous operation of a pipeline system and any terminal facility, unit or process integrally associated with the handling or transferring of oil in bulk to or from a vessel.

(G) Industrial, commercial, agricultural or public facilities which use and store oil, but excluding any terminal facility, unit or process integrally associated with the handling or transferring of oil in bulk to or from a vessel.

(H) Waste treatment facilities including in-plant pipelines, effluent discharge lines, and storage tanks, but excluding waste treatment facilities located on vessels and terminal storage tanks and appurtenances for the reception of oily ballast water or tank washings from vessels and associated systems used for off-loading vessels.

(I) Loading racks, transfer hoses, loading arms and other equipment which are appurtenant to a nontransportation-related facility or terminal facility and which are used to transfer oil in bulk to or from highway vehicles or railroad cars.

(J) Highway vehicles and railroad cars which are used for the transport of oil exclusively within the confines of a nontransportation-related facility and which are not intended to transport oil in interstate or intrastate commerce.

(K) Pipeline systems which are used for the transport of oil exclusively within the confines of a nontransportation-related facility or terminal facility and which are not intended to transport oil in interstate or intrastate commerce, but excluding pipeline systems used to transfer oil in bulk to or from a vessel.

(2) Transportation-related onshore and offshore facilities means:

(A) Onshore and offshore terminal facilities including transfer hoses, loading arms and other equipment and appurtenances used for the purpose of handling or transferring oil in bulk to or from a vessel as well as storage tanks and appurtenances for the reception of oily ballast water or tank washings from vessels, but excluding terminal waste treatment facilities and terminal oil storage facilities.

(B) Transfer hoses, loading arms and other equipment appurtenant to a non-transportation-related facility which is used to transfer oil in bulk to or from a vessel.

(C) Interstate and intrastate onshore and offshore pipeline systems including pumps and appurtenances related thereto as well as in-line or breakout storage tanks needed for the continuous operation of a pipeline system, and pipelines from onshore and offshore oil production facilities, but excluding onshore and offshore piping from wellheads to oil separators and pipelines which are used for the transport of oil exclusively within the confines of a nontransportation-related facility or terminal facility and which are not intended to transport oil in interstate or intrastate commerce or to transfer oil in bulk to or from a vessel.

(D) Highway vehicles and railroad cars which are used for the transport of oil in interstate or intrastate commerce and the equipment and appurtenances related thereto, and equipment used for the fueling of locomotive units, as well as the rights-of-way on which they operate. Excluded are highway vehicles and railroad cars and motive power used exclusively within the confines of a nontransportation-related facility or terminal facility and which are not intended for use in interstate or intrastate commerce.
Appendix B to Part 112—Memorandum of Understanding Among the Secretary of the Interior, Secretary of Transportation, and Administrator of the Environmental Protection Agency

Purpose

This Memorandum of Understanding (MOU) establishes the jurisdictional responsibilities for offshore facilities, including pipelines, pursuant to section 311(j)(1)(c), (j)(5), and (j)(6)(A) of the Clean Water Act (CWA), as amended by the Oil Pollution Act of 1990 (Public Law 101-380). The Secretary of the Department of the Interior (DOI), Secretary of the Department of Transportation (DOT), and Administrator of the Environmental Protection Agency (EPA) agree to the division of responsibilities set forth below for spill prevention and control, response planning, and equipment inspection activities pursuant to those provisions.

Background

Executive Order (E.O.) 12777 (56 FR 54757) delegates to DOI, DOT, and EPA various responsibilities identified in section 311(j) of the CWA. Sections 2(b)(3), 2(d)(3), and 2(e)(3) of E.O. 12777 assigned to DOI spill prevention and control, contingency planning, and equipment inspection activities associated with offshore facilities. Section 311(a)(11) defines the term “offshore facility” to include facilities of any kind located in, on, or under navigable waters of the United States. By using this definition, the traditional DOI role of regulating facilities on the Outer Continental Shelf is expanded by E.O. 12777 to include inland lakes, rivers, streams, and any other inland waters.

Responsibilities

Pursuant to section 2(i) of E.O. 12777, DOI redelegates, and EPA and DOT agree to assume, the functions vested in DOI by sections 2(b)(3), 2(d)(3), and 2(e)(3) of E.O. 12777 as set forth below. For purposes of this MOU, the term “coast line” shall be defined as in the Submerged Lands Act (43 U.S.C. 1301(c)) to mean “the line of ordinary low water along that portion of the coast which is in direct contact with the open sea and the line marking the seaward limit of inland waters.”

1. To EPA, DOI redelegates responsibility for non-transportation-related offshore facilities located landward of the coast line.

2. To DOT, DOI redelegates responsibility for transportation-related facilities, including pipelines, located landward of the coast line. The DOT retains jurisdiction for deepwater ports and their associated seaward pipelines, as delegated by E.O. 12777.

3. The DOI retains jurisdiction over facilities, including pipelines, located seaward of the coast line, except for deepwater ports and associated seaward pipelines delegated by E.O. 12777 to DOT.

Effective Date

This MOU is effective on the date of the final execution by the indicated signatories.

Limitations

1. The DOI, DOT, and EPA may agree in writing to exceptions to this MOU on a facility-specific basis. Affected parties will receive notification of the exceptions.

2. Nothing in this MOU is intended to replace, supersed, or modify any existing agreements between or among DOI, DOT, or EPA.

Modification and Termination

Any party to this agreement may propose modifications by submitting them in writing to the heads of the other agency/department. No modification may be adopted except with the consent of all parties. All parties shall indicate their consent to or disagreement with any proposed modification within 60 days of receipt. Upon the request of any party, representatives of all parties shall meet for the purpose of considering exceptions or modifications to this agreement. This MOU may be terminated only with the mutual consent of all parties.

Dated: November 8, 1993.

Bruce Babbitt,
Secretary of the Interior.

Federico Pena,
Secretary of Transportation.

Carol M. Browner,
Administrator, Environmental Protection Agency.

[59 FR 34102, July 1, 1994]

Pt. 112, App. C

Appendix C to Part 112—Substantial Harm Criteria

1.0 Introduction

The flowchart provided in Attachment C-I to this appendix shows the decision tree with the criteria to identify whether a facility “could reasonably be expected to cause substantial harm to the environment by discharging into or on the navigable waters or adjoining shorelines.” In addition, the Regional Administrator has the discretion to identify facilities that must prepare and submit facility-specific response plans to EPA.
1.1 Definitions

1.1.1 Great Lakes means Lakes Superior, Michigan, Huron, Erie, and Ontario, their connecting and tributary waters, the Saint Lawrence River as far as Saint Regis, and adjacent port areas.

1.1.2 Higher Volume Port Areas include
(1) Boston, MA;
(2) New York, NY;
(3) Delaware Bay and River to Philadelphia, PA;
(4) St. Croix, VI;
(5) Pascagoula, MS;
(6) Mississippi River from Southwest Pass, LA to Baton Rouge, LA;
(7) Louisiana Offshore Oil Port (LOOP), LA;
(8) Lake Charles, LA;
(9) Sabine-Neches River, TX;
(10) Galveston Bay and Houston Ship Channel, TX;
(11) Corpus Christi, TX;
(12) Los Angeles/Long Beach Harbor, CA;
(13) San Francisco Bay, San Pablo Bay, Carquinez Strait, and Suisun Bay to Antioch, CA;
(14) Straits of Juan de Fuca from Port Angeles, WA to and including Puget Sound, WA;
(15) Prince William Sound, AK; and
(16) Others as specified by the Regional Administrator for any EPA Region.

1.1.3 Inland Area means the area shoreward of the boundary lines defined in 46 CFR part 7, except in the Gulf of Mexico. In the Gulf of Mexico, it means the area shoreward of the lines of demarcation (COLREG lines as defined in 33 CFR 80.740-80.850). The inland area does not include the Great Lakes.

1.1.4 Rivers and Canals means a body of water confined within the inland area, including the Intracoastal Waterways and other waterways artificially created for navigating that have project depths of 12 feet or less.

2.0 Description of Screening Criteria for the Substantial Harm Flowchart

A facility has the potential to cause substantial harm to the environment in the event of a discharge must prepare and submit a facility-specific response plan to EPA in accordance with appendix F to this part. A description of the screening criteria for the substantial harm flowchart is provided below:

2.1 Non-Transportation-Related Facilities With a Total Oil Storage Capacity Greater Than or Equal to 42,000 Gallons Where Operations Include Over-Water Transfers of Oil. A non-transportation-related facility with a total oil storage capacity greater than or equal to 42,000 gallons that transfers oil over water to or from vessels must submit a response plan to EPA. Daily oil transfer operations at these types of facilities occur between barges and vessels and onshore bulk storage tanks over open water. These facilities are located adjacent to navigable water.

2.2 Lack of Adequate Secondary Containment at Facilities With a Total Oil Storage Capacity Greater Than or Equal to 1 Million Gallons. Any facility with a total oil storage capacity greater than or equal to 1 million gallons without secondary containment sufficiently large to contain the capacity of the largest aboveground oil storage tank within each area plus sufficient freeboard to allow for precipitation must submit a response plan to EPA. Secondary containment structures that meet the standard of good engineering practice for the purposes of this part include berms, dikes, retaining walls, curbing, culverts, gutters, or other drainage systems.

2.3 Proximity to Fish and Wildlife and Sensitive Environments at Facilities With a Total Oil Storage Capacity Greater Than or Equal to 1 Million Gallons. A facility with a total oil storage capacity greater than or equal to 1 million gallons must submit its response plan if it is located at a distance such that a discharge from the facility could cause injury (as defined at 40 CFR 112.2) to fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA’s “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see appendix E to this part, section 13, for availability) and the applicable Area Contingency Plan. Facility owners or operators must determine the distance at which an oil discharge could cause injury to fish and wildlife and sensitive environments using the appropriate formula presented in Attachment C-III to this appendix or a comparable formula.

2.4 Proximity to Public Drinking Water Intakes at Facilities with a Total Oil Storage Capacity Greater than or Equal to 1 Million Gallons. A facility with a total oil storage capacity greater than or equal to 1 million gallons must submit its response plan if it is located at a distance such that a discharge from the facility would shut down a public drinking water intake, which is analogous to a public water system as described at 40 CFR 143.2(c). The distance at which an oil discharge from an SPCC-regulated facility would shut down a public drinking water intake shall be calculated using the appropriate formula presented in Attachment C-III to this appendix or a comparable formula.

2.5 Facilities That Have Experienced Reportable Oil Discharges in an Amount Greater Than or Equal to 10,000 Gallons Within the Past 5 Years and That Have a Total Oil Storage Capacity Greater Than or Equal to 1 Million Gallons. A facility's oil spill history within the past 5 years shall be considered in the evaluation for substantial harm. Any facility with a total oil storage capacity greater than or equal to 1 million gallons that has experienced a reportable oil discharge in an amount greater than or equal to 10,000 gallons within the past 5 years must submit a response plan to EPA.

3.0 Certification for Facilities That Do Not Pose Substantial Harm
If the facility does not meet the substantial harm criteria listed in Attachment C-I to this appendix, the owner or operator shall complete and maintain at the facility the certification form contained in Attachment C-II to this appendix. In the event an alternative formula that is comparable to the one in this appendix is used to evaluate the substantial harm criteria, the owner or operator shall attach documentation to the certification form that demonstrates the reliability and analytical soundness of the comparable formula and shall notify the Regional Administrator in writing that an alternative formula was used.

4.0 References
USCG IFR (58 FR 7353, February 5, 1993). This document is available through EPA’s rulemaking docket as noted in appendix E to this part, section 13.

ATTACHMENTS TO APPENDIX C

Attachment C-II—Certification of the Applicability of the Substantial Harm Criteria

Facility Name:
Facility Address:

1. Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?
Yes ___ No ___

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?
Yes ___ No ___

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to this appendix or a comparable formula ¹) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA’s “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see appendix E to this part, section 13, for availability) and the applicable Area Contingency Plan.
Yes ___ No ___

4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to this appendix or a comparable formula ¹) such that a discharge from the facility would shut down a public drinking water intake? ²
Yes ___ No ___

Footnote(s):

¹ If a comparable formula is used, documentation of the reliability and analytical soundness of the comparable formula must be attached to this form.

² For the purposes of 40 CFR part 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil discharge in an amount greater than or equal to 10,000 gallons within the last 5 years?
Yes ___ No ___

Certification
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Signature
Name (please type or print)
Title
Date

Attachment C-III—Calculation of the Planning Distance

1.0 Introduction

1.1 The facility owner or operator must evaluate whether the facility is located at a distance such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments or disrupt operations at a public drinking water intake. To quantify that distance, EPA considered oil transport
mechanisms over land and on still, tidal influence, and moving navigable waters. EPA has determined that the primary concern for calculation of a planning distance is the transport of oil in navigable waters during adverse weather conditions. Therefore, two formulas have been developed to determine distances for planning purposes from the point of discharge at the facility to the potential site of impact on moving and still waters, respectively. The formula for oil transport on moving navigable water is based on the velocity of the water body and the time interval for arrival of response resources. The still water formula accounts for the spread of discharged oil over the surface of the water. The method to determine oil transport on tidal influence areas is based on the type of oil discharged and the distance down current during ebb tide and up current during flood tide to the point of maximum tidal influence.

1.2 EPA's formulas were designed to be simple to use. However, facility owners or operators may calculate planning distances using more sophisticated formulas, which take into account broader scientific or engineering principles, or local conditions. Such comparable formulas may result in different planning distances than EPA's formulas. In the event that an alternative formula that is comparable to one contained in this appendix is used to evaluate the criterion in 40 CFR 112.20(f)(1)(ii)(B) or (f)(1)(ii)(C), the owner or operator shall attach documentation to the response plan cover sheet contained in appendix F to this part that demonstrates the reliability and analytical soundness of the alternative formula and shall notify the Regional Administrator in writing that an alternative formula was used.

Footnote(s):

1 For persistent oils or non-persistent oils, a worst case trajectory model (i.e., an alternative formula) may be substituted for the distance formulas described in still, moving, and tidal waters, subject to Regional Administrator's review of the model. An example of an alternative formula that is comparable to the one contained in this appendix would be a worst case trajectory calculation based on credible adverse winds, currents, and/or river stages, over a range of seasons, weather conditions, and river stages. Based on historical information or a spill trajectory model, the Agency may require that additional fish and wildlife and sensitive environments or public drinking water intakes also be protected.

1.3 A regulated facility may meet the criteria for the potential to cause substantial harm to the environment without having to perform a planning distance calculation. For facilities that meet the substantial harm criteria because of inadequate secondary containment or oil spill history, as listed in the flowchart in Attachment C-1 to this appendix, calculation of the planning distance is unnecessary. For facilities that do not meet the substantial harm criteria for secondary containment or oil spill history as listed in the flowchart, calculation of a planning distance for proximity to fish and wildlife and sensitive environments and public drinking water intakes is required, unless it is clear without performing the calculation (e.g., the facility is located in a wetland) that these areas would not be impacted.

1.4 A facility owner or operator who must perform a planning distance calculation on navigable water is only required to do so for the type of navigable water conditions (i.e., moving water, still water, or tidal influence water) applicable to the facility. If a facility owner or operator determines that more than one type of navigable water condition applies, then the facility owner or operator is required to perform a planning distance calculation for each navigable water type to determine the greatest single distance that oil may be transported. As a result, the final planning distance for oil transport on water shall be the greatest individual distance rather than a summation of each calculated planning distance.

1.5 The planning distance formula for transport on moving waterways contains three variables: the velocity of the navigable water (v), the response time interval (t), and a conversion factor (c). The velocity, v, is determined by using the Chezy-Manning equation, which, in this case, models the flood flow rate of water in open channels. The Chezy-Manning equation contains three variables which must be determined by facility owners or operators. Manning's Roughness Coefficient (for flood flow rates), n, can be determined from Table 1 of this attachment. The hydraulic radius, r, can be estimated using the topographic maps that can be ordered from the U.S. Geological Survey, as listed in Table 2 of this attachment.

1.6 Table 3 of this attachment contains specified time intervals for estimating the arrival of response resources at the scene of a discharge. Assuming no prior planning, response resources should be able to arrive at the discharge site within 12 hours of the discovery of any oil discharge in Higher Volume Port Areas and within 24 hours in Great Lakes and all other river, canal, inland, and nearshore areas. The specified time intervals in Table 3 of this attachment are to be used only to aid in the identification of whether a facility could cause substantial harm to the environment. Once it is determined that a plan must be developed for additional areas as appropriate.

2.0 Oil Transport on Moving Navigable Waters

2.1 The facility owner or operator must use the following formula or a comparable formula as described in § 112.20(a)(3) to calculate the planning distance for oil transport on moving navigable water:

\[d = v \times t \times c \]

where

- \(d \): the distance downstream from a facility within which fish and wildlife and sensitive environments could be injured or a public drinking water intake would be shut down in the event of an oil discharge (in miles);
- \(v \): the velocity of the river/navigable water of concern (in ft/sec) as determined by Chezy-Manning's equation (see below and Tables 1 and 2 of this attachment);
- \(t \): the time interval specified in Table 3 based upon the type of water body and location (in hours); and
- \(c \): constant conversion factor 0.68 sec\(\omega \) mile/hr\(\omega \) ft (3600 sec/hr = 5280 ft/mile).

2.2 Chezy-Manning's equation is used to determine velocity:

\[v = \frac{1.5}{n} \times \frac{r^{2/3}}{s^{1/2}} \]

where

- \(v \): the velocity of the river of concern (in ft/sec);
- \(n \): Manning's Roughness Coefficient from Table 1 of this attachment;
- \(r \): the hydraulic radius; the hydraulic radius can be approximated for parabolic channels by multiplying the average mid-channel depth of the river (in feet) by 0.667 (sources for obtaining the mid-channel depth are listed in Table 2 of this attachment); and
- \(s \): the average slope of the river (unitless) obtained from the U.S. Geological Survey topographic maps at the address listed in Table 2 of this attachment.
Table 1—Manning’s Roughness Coefficient for Natural Streams

[Note: Coefficients are presented for high flow rates at or near flood stage.]

<table>
<thead>
<tr>
<th>Stream description</th>
<th>Roughness coefficient (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Streams (Top Width <100 ft.)</td>
<td></td>
</tr>
<tr>
<td>Clean:</td>
<td></td>
</tr>
<tr>
<td>Straight</td>
<td>0.03</td>
</tr>
<tr>
<td>Winding</td>
<td>0.04</td>
</tr>
<tr>
<td>Sluggish (Weedy, deep pools):</td>
<td></td>
</tr>
<tr>
<td>No trees or brush</td>
<td>0.06</td>
</tr>
<tr>
<td>Trees and/or brush</td>
<td>0.10</td>
</tr>
<tr>
<td>Major Streams (Top Width >100 ft.)</td>
<td></td>
</tr>
<tr>
<td>Regular section:</td>
<td></td>
</tr>
<tr>
<td>(No boulders/brush)</td>
<td>0.035</td>
</tr>
<tr>
<td>Irregular section:</td>
<td></td>
</tr>
<tr>
<td>(Brush)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 2—Sources of r and s for the Chezy-Manning Equation

All of the charts and related publications for navigational waters may be ordered from:

Distribution Branch
(N/CG33)
National Ocean Service
Riverdale, Maryland 20737-1199
Phone: (301) 436-6990

There will be a charge for materials ordered and a VISA or Mastercard will be accepted.

The mid-channel depth to be used in the calculation of the hydraulic radius (r) can be obtained directly from the following sources:

- Charts of Canadian Coastal and Great Lakes Waters:
 Canadian Hydrographic Service
 Department of Fisheries and Oceans Institute
 P.O. Box 8080
 1675 Russell Road
 Ottawa, Ontario K1G 3H6
 Canada
 Phone: (613) 998-4931

- Charts and Maps of Lower Mississippi River
 (Gulf of Mexico to Ohio River and St. Francis, White, Big Sunflower, Atchafalaya, and other rivers):
 U.S. Army Corps of Engineers
 Vicksburg District
 P.O. Box 60
 Vicksburg, Mississippi 39180
 Phone: (601) 634-5000

- Charts of Upper Mississippi River and Illinois Waterway to Lake Michigan:
 U.S. Army Corps of Engineers
 Rock Island District
 P.O. Box 2004
 Rock Island, Illinois 61204
 Phone: (309) 794-5552

- Charts of Missouri River:
 U.S. Army Corps of Engineers
The average slope of the river (s) can be determined from the topographic maps using the following steps:

1. Locate the facility on the map.

2. Find the Normal Pool Elevation at the point of discharge from the facility into the water (A).

3. Find the Normal Pool Elevation of the public drinking water intake or fish and wildlife and sensitive environment located downstream (B) (Note: The owner or operator should use a minimum of 20 miles downstream as a cutoff to obtain the average slope if the location of a specific public drinking water intake or fish and wildlife and sensitive environment is unknown).

4. If the Normal Pool Elevation is not available, the elevation contours can be used to find the slope. Determine elevation of the water at the point of discharge from the facility (A). Determine the elevation of the water at the appropriate distance downstream (B). The formula presented below can be used to calculate the slope.

5. Determine the distance (in miles) between the facility and the public drinking water intake or fish and wildlife and sensitive environments (C).

6. Use the following formula to find the slope, which will be a unitless value: Average Slope=\((\frac{A-B}{C})\) \times \[1 \text{ mile/5280 feet}\]

2.4 If it is not feasible to determine the slope and mid-channel depth by the Chezy-Manning equation, then the river velocity can be approximated on-site. A specific length, such as 100 feet, can be marked off along the shoreline. A float can be dropped into the stream above the mark, and the time required for the float to travel the distance can be used to determine the velocity in feet per second. However, this method will not yield an average velocity for the length of the stream, but a velocity only for the specific location of measurement. In addition, the flow rate will vary depending on weather conditions such as wind and rainfall. It is recommended that facility owners or operators repeat the measurement under a variety of conditions to obtain the most accurate estimate of the surface water velocity under adverse weather conditions.

2.5 The planning distance calculations for moving and still navigable waters are based on worst case discharges of persistent oils. Persistent oils are of concern because they can remain in the water for significant periods of time and can potentially exist in large quantities downstream. Owners or operators of facilities that store persistent as well as non-persistent oils may use a comparable formula. The volume of oil discharged is not included as part of the planning...
distance calculation for moving navigable waters. Facilities that will meet this substantial harm criterion are those with facility capacities greater than or equal to 1 million gallons. It is assumed that these facilities are capable of having an oil discharge of sufficient quantity to cause injury to fish and wildlife and sensitive environments or shut down a public drinking water intake. While owners or operators of transfer facilities that store greater than or equal to 42,000 gallons are not required to use a planning distance formula for purposes of the substantial harm criteria, they should use a planning distance calculation in the development of facility-specific response plans.

Table 3—Specified Time Intervals

<table>
<thead>
<tr>
<th>Operating areas</th>
<th>Substantial harm planning time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher volume port area</td>
<td>12 hour arrival + 3 hour deployment = 15 hours.</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>24 hour arrival + 3 hour deployment = 27 hours.</td>
</tr>
<tr>
<td>All other rivers and canals, inland, and nearshore areas</td>
<td>24 hour arrival + 3 hour deployment = 27 hours.</td>
</tr>
</tbody>
</table>

2.6 Example of the Planning Distance Calculation for Oil Transport on Moving Navigable Waters. The following example provides a sample calculation using the planning distance formula for a facility discharging oil into the Monongahela River:

(1) Solve for \(v \) by evaluating \(n \), \(r \), and \(s \) for the Chezy-Manning equation:

Find the roughness coefficient, \(n \), on Table 1 of this attachment for a regular section of a major stream with a top width greater than 100 feet. The top width of the river can be found from the topographic map.

\[
n = 0.035. \\
\text{Find slope, } s, \text{ where } A = 727 \text{ feet}, B = 710 \text{ feet}, \text{ and } C = 25 \text{ miles.} \\
\text{Solving:} \\
s = \left(\frac{727 \text{ ft} - 1710 \text{ ft}}{25 \text{ miles}}\right) \times \left[\frac{1 \text{ mile}}{5280 \text{ feet}}\right] = 1.3 \times 10^{-4} \\
\]

The average mid-channel depth is found by averaging the mid-channel depth for each mile along the length of the river between the facility and the public drinking water intake or the fish or wildlife or sensitive environment (or 20 miles downstream if applicable). This value is multiplied by 0.667 to obtain the hydraulic radius. The mid-channel depth is found by obtaining values for \(r \) and \(s \) from the sources shown in Table 2 for the Monongahela River.

\[
\text{Solving:} \\
r = 0.667 \times 20 \text{ feet} = 13.33 \text{ feet} \\
\text{Solve for } v \text{ using:} \\
v = \frac{1.5}{n} \times r^{2/3} \times s^{1/2} \\
v = \left[\frac{1.5}{0.035}\right] \times (13.33)^{2/3} \times (1.3 \times 10^{-4})^{1/2} \\
v = 2.73 \text{ feet/second} \\
\]

(2) Find \(t \) from Table 3 of this attachment. The Monongahela River's resource response time is 27 hours.

(3) Solve for planning distance, \(d \):

\[
d = v \times t \times c \\
d = (2.73 \text{ ft/sec}) \times (27 \text{ hours}) \times (0.68 \text{ sec/mile/hr ft}) \\
d = 50 \text{ miles} \\
Therefore, 50 miles downstream is the appropriate planning distance for this facility.
\]

3.0 Oil Transport on Still Water

3.1 For bodies of water including lakes or ponds that do not have a measurable velocity, the spreading of the oil over the surface must be considered. Owners or operators of facilities located next to still water bodies may use a comparable means of calculating the planning distance. If a comparable formula is used, documentation of the reliability and analytical soundness of the comparable calculation must be attached to the response plan cover sheet.

3.2 Example of the Planning Distance Calculation for Oil Transport on Still Water. To assist those facilities which could potentially discharge into a still body of water, the following analysis was performed to provide an example of the type of formula that may be used to calculate the planning distance. For this example, a worst case discharge of 2,000,000 gallons is used.

(1) The surface area in square feet covered by an oil discharge on still water, \(A_1 \), can be determined by the following formula, \(^2\) where \(V \) is the volume of the discharge in gallons and \(C \) is a constant conversion factor:

\[
A_1 = 10^5 \times V^{3/4} \times C \\
C = 0.1643 \\
A_1 = 10^5 \times (2,000,000 \text{ gallons})^{3/4} \times 0.1643 \\
\]

Footnote(s):

\[A_1 = 8.74 \times 10^8 \text{ ft}^2 \]

(2) The spreading formula is based on the theoretical condition that the oil will spread uniformly in all directions forming a circle. In reality, the outfall of the discharge will direct the oil to the surface of the water where it intersects the shoreline. Although the oil will not spread uniformly in all directions, it is assumed that the discharge will spread from the shoreline into a semi-circle (this assumption does not account for winds or wave action).

(3) The area of a circle \(A = \pi r^2 \)

(4) To account for the assumption that oil will spread in a semi-circular shape, the area of a circle is divided by 2 and is designated as \(A_2 \).

\[A_2 = \frac{\pi r^2}{2} \]

Solving for the radius, \(r \), using the relationship \(A_2 = 8.74 \times 10^8 \text{ ft}^2 = \frac{\pi r^2}{2} \)

Therefore, \(r = 23,586 \text{ ft} \)

\[r = 23,586 \text{ ft} + 5,280 \text{ ft/mile} = 4.5 \text{ miles} \]

Assuming a 20 knot wind under storm conditions:

1 knot = 1.15 miles/hour

20 knots \(\times \) 1.15 miles/hour/knot = 23 miles/hr

Assuming that the oil slick moves at 3 percent of the wind’s speed:

\[23 \text{ miles/hour} \times 0.03 = 0.69 \text{ miles/hour} \]

(5) To estimate the distance that the oil will travel, use the times required for response resources to arrive at different geographic locations as shown in Table 3 of this attachment.

For example:

For Higher Volume Port Areas: 15 hrs \(\times \) 0.69 miles/hr = 10.4 miles

For Great Lakes and all other areas: 27 hrs \(\times \) 0.69 miles/hr = 18.6 miles

(6) The total distance that the oil will travel from the point of discharge, including the distance due to spreading, is calculated as follows:

Higher Volume Port Areas: \(d = 10.4 + 4.5 \text{ miles or approximately } 15 \text{ miles} \)

Great Lakes and all other areas: \(d = 18.6 + 4.5 \text{ miles or approximately } 23 \text{ miles} \)

4.0 Oil Transport on Tidal-Influence Areas

4.1 The planning distance method for tidal influence navigable water is based on worst case discharges of persistent and non-persistent oils. Persistent oils are of primary concern because they can potentially cause harm over a greater distance. For persistent oils discharged into tidal waters, the planning distance is 15 miles from the facility down current during ebb tide and to the point of maximum tidal influence or 15 miles, whichever is less, during flood tide.

4.2 For non-persistent oils discharged into tidal waters, the planning distance is 5 miles from the facility down current during ebb tide and to the point of maximum tidal influence or 5 miles, whichever is less, during flood tide.

4.3 Example of Determining the Planning Distance for Two Types of Navigable Water Conditions. Below is an example of how to determine the proper planning distance when a facility could impact two types of navigable water conditions: moving water and tidal water.

(1) Facility X stores persistent oil and is located downstream from locks along a slow moving river which is affected by tides. The river velocity, \(v \), is determined to be 0.5 feet/second from the Chezy-Manning equation used to calculate oil transport on moving navigable waters. The specified time interval, \(t \), obtained from Table 3 of this attachment for river areas is 27 hours. Therefore, solving for the planning distance, \(d \):

\[d = v \times t \times c \]

\[d = (0.5 \text{ ft/sec}) \times (27 \text{ hours}) \times (0.68 \text{ secmile/hrft}) \]

\[d = 9.18 \text{ miles.} \]

(2) However, the planning distance for maximum tidal influence down current during ebb tide is 15 miles, which is greater than the calculated 9.18 miles. Therefore, 15 miles downstream is the appropriate planning distance for this facility.

5.0 Oil Transport Over Land

5.1 Facility owners or operators must evaluate the potential for oil to be transported over land to navigable waters of the United States. The owner or operator must evaluate the likelihood that portions of a worst case discharge would reach navigable waters via open channel flow or from sheet flow across the land, or be prevented from reaching navigable waters when trapped in natural or man-made depressions excluding secondary containment structures.

5.2 As discharged oil travels over land, it may enter a storm drain or open concrete channel intended for drainage. It is assumed that once oil reaches such an inlet, it will flow into the receiving navigable water. During a storm event, it is highly probable that the oil will either flow into the drainage structures or follow the natural contours of the land and flow into the navigable water. Expected minimum and maximum velocities are provided as examples of open concrete channel and pipe flow. The ranges listed below reflect minimum and maximum velocities used as design criteria. The calculation below

Footnote(s):

23 miles/hour \(\times \) 0.03 = 0.69 miles/hour
5.3 Assuming a length of 0.5 mile from the point of discharge through an open concrete channel or concrete storm drain to a navigable water, the travel times (distance/velocity) are:

- **1.8 minutes at a velocity of 25 feet per second**
- **14.7 minutes at a velocity of 3 feet per second**
- **22.0 minutes for a velocity of 2 feet per second**

5.4 The distances that shall be considered to determine the planning distance are illustrated in Figure C-I of this attachment. The relevant distances can be described as follows:

- **D1** = Distance from the nearest opportunity for discharge, \(X_1\), to a storm drain or an open concrete channel leading to navigable water.
- **D2** = Distance through the storm drain or open concrete channel to navigable water.
- **D3** = Distance downstream from the outfall within which fish and wildlife and sensitive environments could be injured or a public drinking water intake would be shut down as determined by the planning distance formula.
- **D4** = Distance from the nearest opportunity for discharge, \(X_2\), to fish and wildlife and sensitive environments not bordering navigable water.

5.5 A facility owner or operator whose nearest opportunity for discharge is located within 0.5 mile of a navigable water must complete the planning distance calculation (D3) for the type of navigable water near the facility or use a comparable formula.

5.6 A facility that is located at a distance greater than 0.5 mile from a navigable water must also calculate a planning distance (D3) if it is in close proximity (i.e., D1 is less than 0.5 mile and other factors are conducive to oil travel over land) to storm drains that flow to navigable waters. Factors to be considered in assessing oil transport over land to storm drains shall include the topography of the surrounding area, drainage patterns, man-made barriers (excluding secondary containment structures), and soil distribution and porosity. Storm drains or concrete drainage channels that are located in close proximity to the facility can provide a direct pathway to navigable waters, regardless of the length of the drainage pipe. If D1 is less than or equal to 0.5 mile, a discharge from the facility could pose substantial harm because the time to travel the distance from the storm drain to the navigable water (D2) is virtually instantaneous.

5.7 A facility's proximity to fish and wildlife and sensitive environments not bordering a navigable water, as depicted as D4 in Figure C-I of this attachment, must also be considered, regardless of the distance from the facility to navigable waters. Factors to be considered in assessing oil transport over land to fish and wildlife sensitive environments should include the topography of the surrounding area, drainage patterns, man-made barriers (excluding secondary containment structures), and soil distribution and porosity.

5.8 If a facility is not found to pose substantial harm to fish and wildlife and sensitive environments not bordering navigable waters via oil transport on land, then supporting documentation should be maintained at the facility. However, such documentation should be submitted with the response plan if a facility is found to pose substantial harm.

[Please see PDF for image: EC01MR92.010]
<table>
<thead>
<tr>
<th>PART A: WORST CASE DISCHARGE PLANNING VOLUME CALCULATION FOR ONSHORE STORAGE FACILITIES 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footnote(s):</td>
</tr>
<tr>
<td>¹“Storage facilities” represent all facilities subject to this part, excluding oil production facilities.</td>
</tr>
</tbody>
</table>

Part A of this worksheet is to be completed by the owner or operator of an SPCC-regulated facility (excluding oil production facilities) if the facility meets the criteria as presented in appendix C to this part, or if it is determined by the RA that the facility could cause substantial harm to the environment. If you are the owner or operator of a production facility, please proceed to part B of this worksheet.

A.1 SINGLE-TANK FACILITIES

For facilities containing only one aboveground oil storage tank, the worst case discharge planning volume equals the capacity of the oil storage tank. If adequate secondary containment (sufficiently large to contain the capacity of the aboveground oil storage tank plus sufficient freeboard to allow for precipitation) exists for the oil storage tank, multiply the capacity of the tank by 0.8.

1. **FINAL WORST CASE VOLUME: ____ GAL**

2. **(Do not proceed further.)**

A.2 SECONDARY CONTAINMENT—MULTIPLE-TANK FACILITIES

Are all aboveground oil storage tanks or groups of aboveground oil storage tanks at the facility without adequate secondary containment? **2**

<table>
<thead>
<tr>
<th>Footnote(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>²Secondary containment is described in 40 CFR part 112, subparts A through C. Acceptable methods and structures for containment are also given in 40 CFR 112.7(c) (1).</td>
</tr>
</tbody>
</table>

| ____ (Y/N) |

1. **If the answer is yes, the final worst case discharge planning volume equals the total aboveground oil storage capacity at the facility.**

2. **(FINAL WORST CASE VOLUME: ____ GAL)**

3. **(Do not proceed further.)**

2. **If the answer is no, calculate the total aboveground oil storage capacity of tanks without adequate secondary containment. If all aboveground oil storage tanks or groups of aboveground oil storage tanks at the facility have adequate secondary containment, ENTER “0” (zero).**

| ____ GAL |

2. **A.2.3 Calculate the capacity of the largest single aboveground oil storage tank within an adequate secondary containment area or the combined capacity of a group of aboveground oil storage tanks permanently manifolded together, whichever is greater, PLUS THE VOLUME FROM QUESTION A.2.2.**

| FINAL WORST CASE VOLUME: ____ GAL |

<table>
<thead>
<tr>
<th>Footnote(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>³All complexes that are jointly regulated by EPA and the USCG must also calculate the worst case discharge planning volume for the transportation-related portions of the facility and plan for whichever volume is greater.</td>
</tr>
</tbody>
</table>

PART B: WORST CASE DISCHARGE PLANNING VOLUME CALCULATION FOR ONSHORE PRODUCTION FACILITIES

Part B of this worksheet is to be completed by the owner or operator of an SPCC-regulated oil production facility if the facility meets the criteria presented in...
appendix C to this part, or if it is determined by the RA that the facility could cause substantial harm. A production facility consists of all wells (producing and exploratory) and related equipment in a single geographical oil or gas field operated by a single operator.

B.1 SINGLE-TANK FACILITIES

B.1.1 For facilities containing only one aboveground oil storage tank, the worst case discharge planning volume equals the capacity of the aboveground oil storage tank plus the production volume of the well with the highest output at the facility. If adequate secondary containment (sufficiently large to contain the capacity of the aboveground oil storage tank plus sufficient freeboard to allow for precipitation) exists for the storage tank, multiply the capacity of the tank by 0.8.

B.1.2 For facilities with production wells producing by pumping, if the rate of the well with the highest output is known and the number of days the facility is unattended can be predicted, then the production volume is equal to the pumping rate of the well multiplied by the greatest number of days the facility is unattended.

B.1.3 If the pumping rate of the well with the highest output is estimated or the maximum number of days the facility is unattended is estimated, then the production volume is determined from the pumping rate of the well multiplied by 1.5 times the greatest number of days that the facility has been or is expected to be unattended.

B.1.4 Attachment D-1 to this appendix provides methods for calculating the production volume for exploratory wells and production wells producing under pressure.

1. **FINAL WORST CASE VOLUME: ____ GAL**
2. Do not proceed further.

B.2 SECONDARY CONTAINMENT—MULTIPLE-TANK FACILITIES

Are all aboveground oil storage tanks or groups of aboveground oil storage tanks at the facility without adequate secondary containment?

_ ___ (Y/N)

B.2.1 If the answer is yes, the final worst case volume equals the total aboveground oil storage capacity without adequate secondary containment plus the production volume of the well with the highest output at the facility.

1. For facilities with production wells producing by pumping, if the rate of the well with the highest output is known and the number of days the facility is unattended can be predicted, then the production volume is equal to the pumping rate of the well multiplied by the greatest number of days the facility is unattended.

2. If the pumping rate of the well with the highest output is estimated or the maximum number of days the facility is unattended is estimated, then the production volume is determined from the pumping rate of the well multiplied by 1.5 times the greatest number of days that the facility has been or is expected to be unattended.

3. Attachment D-1 to this appendix provides methods for calculating the production volumes for exploratory wells and production wells producing under pressure.

(A) **FINAL WORST CASE VOLUME: ____ GAL**
(B) Do not proceed further.

B.2.2 If the answer is no, calculate the total aboveground oil storage capacity of tanks without adequate secondary containment. If all aboveground oil storage tanks or groups of aboveground oil storage tanks at the facility have adequate secondary containment, ENTER "0" (zero).

_ ____ GAL

B.2.3 Calculate the capacity of the largest single aboveground oil storage tank within an adequate secondary containment area or the combined capacity of a group of aboveground oil storage tanks permanently manifolded together, whichever is greater, plus the production volume of the well with the highest output, PLUS THE VOLUME FROM QUESTION B.2.2. Attachment D-1 provides methods for calculating the production volumes for exploratory wells and production wells producing under pressure.

1. **FINAL WORST CASE VOLUME: ____ GAL**

Footnote(s):

4 All complexes that are jointly regulated by EPA and the USCG must also calculate the worst case discharge planning volume for the transportation-related portions of the facility and plan for whichever volume is greater.

2. Do not proceed further.

Attachments to Appendix D

Attachment D-1—Methods To Calculate Production Volumes for Production Facilities With Exploratory Wells or Production Wells Producing Under Pressure

1.0 Introduction

The owner or operator of a production facility with exploratory wells or production wells producing under pressure shall compare the well rate of the highest output well (rate of well), in barrels per day, to the ability of response equipment and personnel to recover the volume of oil that could be discharged (rate of
recovery), in barrels per day. The result of this comparison will determine the method used to calculate the production volume for the production facility. This production volume is to be used to calculate the worst case discharge planning volume in part B of this appendix.

2.0 Description of Methods

2.1 Method A

If the well rate would overwhelm the response efforts (i.e., rate of well/rate of recovery ≥1), then the production volume would be the 30-day forecasted well rate for a well 10,000 feet deep or less, or the 45-day forecasted well rate for a well deeper than 10,000 feet.

(1) For wells 10,000 feet deep or less:

Production volume = 30 days × rate of well.

(2) For wells deeper than 10,000 feet:

Production volume = 45 days × rate of well.

2.2 Method B

2.2.1 If the rate of recovery would be greater than the well rate (i.e., rate of well/rate of recovery <1), then the production volume would equal the sum of two terms:

Production volume = discharge volume 1 + discharge volume 2

2.2.2 The first term represents the volume of the oil discharged from the well between the time of the blowout and the time the response resources are on scene and recovering oil (discharge volume 1).

Discharge volume 1 = (days unattended + days to respond) × (rate of well)

2.2.3 The second term represents the volume of oil discharged from the well after the response resources begin operating until the discharge is stopped, adjusted for the recovery rate of the response resources (discharge volume 2).

(1) For wells 10,000 feet deep or less:

Discharge volume 2 = [30 days−(days unattended + days to respond)] × (rate of well) × (rate of well/rate of recovery)

(2) For wells deeper than 10,000 feet:

Discharge volume 2 = [45 days−(days unattended + days to respond)] × (rate of well) × (rate of well/rate of recovery)

3.0 Example

3.1 A facility consists of two production wells producing under pressure, which are both less than 10,000 feet deep. The well rate of well A is 5 barrels per day, and the well rate of well B is 10 barrels per day. The facility is unattended for a maximum of 7 days. The facility operator estimates that it will take 2 days to have response equipment and personnel on scene and responding to a blowout, and that the projected rate of recovery will be 20 barrels per day.

(1) First, the facility operator determines that the highest output well is well B. The facility operator calculates the ratio of the rate of well to the rate of recovery:

10 barrels per day/20 barrels per day = 0.5 Because the ratio is less than one, the facility operator will use Method B to calculate the production volume.

(2) The first term of the equation is:

Discharge volume 1 = (7 days + 2 days) × (10 barrels per day) = 90 barrels

(3) The second term of the equation is:

Discharge volume 2 = [30 days−(7 days + 2 days)] × (10 barrels per day) × (0.5) = 105 barrels

(4) Therefore, the production volume is:

Production volume = 90 barrels + 105 barrels = 195 barrels

3.2 If the recovery rate was 5 barrels per day, the ratio of rate of well to rate of recovery would be 2, so the facility operator would use Method A. The production volume would have been:

30 days × 10 barrels per day = 300 barrels

Pt. 112, App. E

Appendix E to Part 112—Determination and Evaluation of Required Response Resources for Facility Response Plans

1.0 Purpose and Definitions

1.1 The purpose of this appendix is to describe the procedures to identify response resources to meet the requirements of §112.20. To identify response resources to meet the facility response plan requirements of 40 CFR 112.20(h), owners or operators shall follow this appendix or, where not appropriate, shall
1.2 Definitions.

1.2.1 Animal fat means a non-petroleum oil, fat, or grease of animal, fish, or marine mammal origin. Animal fats are further classified based on specific gravity as follows:

- (1) Group A—specific gravity less than 0.8.
- (2) Group B—specific gravity equal to or greater than 0.8 and less than 1.0.
- (3) Group C—specific gravity equal to or greater than 1.0.

1.2.2 Nearshore is an operating area defined as extending seaward 12 miles from the boundary lines defined in 46 CFR part 7, except in the Gulf of Mexico. In the Gulf of Mexico, it means the area extending 12 miles from the line of demarcation (COLREG lines) defined in 49 CFR 80.740 and 80.850.

1.2.3 Non-persistent oils or Group 1 oils include:

- (1) A petroleum-based oil that, at the time of shipment, consists of hydrocarbon fractions:
 - (A) At least 50 percent of which by volume, distill at a temperature of 340 degrees C (645 degrees F); and
 - (B) At least 95 percent of which by volume, distill at a temperature of 370 degrees C (700 degrees F); and
- (2) A non-petroleum oil, other than an animal fat or vegetable oil, with a specific gravity less than 0.8.

1.2.4 Non-petroleum oil means oil of any kind that is not petroleum-based, including but not limited to: fats, oils, and greases of animal, fish, or marine mammal origin; and vegetable oils, including oils from seeds, nuts, fruits, and kernels.

1.2.5 Ocean means the nearshore area.

1.2.6 Operating area means Rivers and Canals, Inland, Nearshore, and Great Lakes geographic location(s) in which a facility is handling, storing, or transporting oil.

1.2.7 Operating environment means Rivers and Canals, Inland, Great Lakes, or Ocean. These terms are used to define the conditions in which response equipment is designed to function.

1.2.8 Persistent oils include:

- (1) A petroleum-based oil that does not meet the distillation criteria for a non-persistent oil. Persistent oils are further classified based on specific gravity as follows:
 - (A) Group 2—specific gravity less than 0.85;
 - (B) Group 3—specific gravity equal to or greater than 0.85 and less than 0.95;
 - (C) Group 4—specific gravity equal to or greater than 0.95 and less than 1.0; or
 - (D) Group 5—specific gravity equal to or greater than 1.0.
- (2) A non-petroleum oil, other than an animal fat or vegetable oil, with a specific gravity of 0.8 or greater. These oils are further classified based on specific gravity as follows:
 - (A) Group 2—specific gravity equal to or greater than 0.8 and less than 0.85;
 - (B) Group 3—specific gravity equal to or greater than 0.85 and less than 0.95;
 - (C) Group 4—specific gravity equal to or greater than 0.95 and less than 1.0; or
 - (D) Group 5—specific gravity equal to or greater than 1.0.

1.2.9 Vegetable oil means a non-petroleum oil or fat of vegetable origin, including but not limited to oils and fats derived from plant seeds, nuts, fruits, and kernels. Vegetable oils are further classified based on specific gravity as follows:

- (1) Group A—specific gravity less than 0.8.
- (2) Group B—specific gravity equal to or greater than 0.8 and less than 1.0.
- (3) Group C—specific gravity equal to or greater than 1.0.

1.2.10 Other definitions are included in §112.2, section 1.1 of appendix C, and section 3.0 of appendix F.

2.0 Equipment Operability and Readiness

2.1 All equipment identified in a response plan must be designed to operate in the conditions expected in the facility's geographic area (i.e., operating environment). These conditions vary widely based on location and season. Therefore, it is difficult to identify a single stockpile of response equipment that will function effectively in each geographic location (i.e., operating area).

2.2 Facilities handling, storing, or transporting oil in more than one operating environment as indicated in Table 1 of this appendix must identify equipment capable of successfully functioning in each operating environment.

2.3 When identifying equipment for the response plan (based on the use of this appendix), a facility owner or operator must consider the inherent limitations of the operability of equipment components and response systems. The criteria in Table 1 of this appendix shall be used to evaluate the operability in a given
environment. These criteria reflect the general conditions in certain operating environments.

2.3.1 The Regional Administrator may require documentation that the boom identified in a facility response plan meets the criteria in Table 1 of this appendix. Absent acceptable documentation, the Regional Administrator may require that the boom be tested to demonstrate that it meets the criteria in Table 1 of this appendix. Testing must be in accordance with ASTM F 715, ASTM F 989, or other tests approved by EPA as deemed appropriate (see appendix E to this part, section 13, for general availability of documents).

2.4 Table 1 of this appendix lists criteria for oil recovery devices and boom. All other response devices necessary to sustain or support response operations in an operating environment must be designed to function in the same conditions. For example, boats that deploy or support skimmers or boom must be capable of being safely operated in the significant wave heights listed for the applicable operating environment.

2.5 A facility owner or operator shall refer to the applicable Area Contingency Plan (ACP), where available, to determine if ice, debris, and weather-related visibility are significant factors to evaluate the operability of equipment. The ACP may also identify the average temperature ranges expected in the facility's operating area. All equipment identified in a response plan must be designed to operate within those conditions or ranges.

2.6 This appendix provides information on response resource mobilization and response times. The distance of the facility from the storage location of the response resources must be used to determine whether the resources can arrive on-scene within the stated time. A facility owner or operator shall include the time for notification, mobilization, and travel of resources identified to meet the medium and Tier 1 worst case discharge requirements identified in sections 4.3.7 and 4.3.9 of this appendix (for medium discharges) and section 5.3 of this appendix (for worst case discharges). The facility owner or operator must plan for notification and mobilization of Tier 2 and 3 response resources as necessary to meet the requirements for arrival on-scene in accordance with section 5.3 of this appendix. An on-water speed of 5 knots and a land speed of 35 miles per hour is assumed, unless the facility owner or operator can demonstrate otherwise.

2.7 In identifying equipment, the facility owner or operator shall list the storage location, quantity, and manufacturer's make and model. For oil recovery devices, the effective daily recovery capacity, as determined using section 6 of this appendix, must be included. For boom, the overall boom height (draft and freeboard) shall be included. A facility owner or operator is responsible for ensuring that the identified boom has compatible connectors.

3.0 Determining Response Resources Required for Small Discharges—Petroleum Oils and Non-Petroleum Oils Other Than Animal Fats and Vegetable Oils

3.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a small discharge. A small discharge is defined as any discharge volume less than or equal to 2,100 gallons, but not to exceed the calculated worst case discharge. The equipment must be designed to function in the operating environment at the point of expected use.

3.2 Complexes that are regulated by EPA and the United States Coast Guard (USCG) must also consider planning quantities for the transportation-related transfer portion of the facility.

3.2.1 Petroleum oils. The USCG planning level that corresponds to EPA's "small discharge" is termed "the average most probable discharge." A USCG rule found at 33 CFR 154.1020 defines "the average most probable discharge" as the lesser of 50 barrels (2,100 gallons) or 1 percent of the volume of the worst case discharge. Owners or operators of complexes that handle, store, or transport petroleum oils must compare oil discharge volumes for a small discharge and an average most probable discharge, and plan for whichever quantity is greater.

3.2.2 Non-petroleum oils other than animal fats and vegetable oils. Owners or operators of complexes that handle, store, or transport non-petroleum oils other than animal fats and vegetable oils must plan for oil discharge volumes for a small discharge. There is no USCG planning level that directly corresponds to EPA's "small discharge." However, the USCG (33 CFR 154.545) has requirements to identify equipment to contain oil resulting from an operational discharge.

3.3 The response resources shall, as appropriate, include:

3.3.1 One thousand feet of containment boom (or, for complexes with marine transfer components, 1,000 feet of containment boom or two times the length of the largest vessel that regularly conducts oil transfers to or from the facility, whichever is greater), and a means of deploying it within 1 hour of the discovery of a discharge;

3.3.2 Oil recovery devices with an effective daily recovery capacity equal to the amount of oil discharged in a small discharge or greater which is available at the facility within 2 hours of the detection of an oil discharge; and

3.3.3 Oil storage capacity for recovered oily material indicated in section 12.2 of this appendix.

4.0 Determining Response Resources Required for Medium Discharges—Petroleum Oils and Non-Petroleum Oils Other Than Animal Fats and Vegetable Oils

4.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a medium discharge of oil for that facility. This will require response resources capable of containing and collecting up to 36,000 gallons of oil or 10 percent of the worst case discharge, whichever is less. All equipment identified must be designed to operate in the applicable operating environment specified in Table 1 of this appendix.

4.2 Complexes that are regulated by EPA and the USCG must also consider planning quantities for the transportation-related transfer portion of the facility.

4.2.1 Petroleum oils. The USCG planning level that corresponds to EPA's "medium discharge" is termed "the maximum most probable discharge." The USCG rule found at 33 CFR part 154 defines "the maximum most probable discharge" as a discharge of 1,200 barrels (50,400 gallons) or 10 percent of the worst case discharge, whichever is less. Owners or operators of complexes that handle, store, or transport petroleum oils must compare calculated discharge volumes for a medium discharge and a maximum most probable discharge, and plan for whichever quantity is greater.

4.2.2 Non-petroleum oils other than animal fats and vegetable oils. Owners or operators of complexes that handle, store, or transport non-petroleum oils other than animal fats and vegetable oils must plan for oil discharge volumes for a medium discharge. For non-petroleum oils, there is no USCG planning level that directly corresponds to EPA's "medium discharge."

4.3 Oil recovery devices identified to meet the applicable medium discharge volume planning criteria must be located such that they are capable of arriving on-scene within 6 hours in higher volume port areas and the Great Lakes and within 12 hours in all other areas. Higher volume port areas and Great Lakes areas are defined in section 1.1 of appendix C to this part.

4.4 Because rapid control, containment, and removal of oil are critical to reduce discharge impact, the owner or operator must determine response resources using an effective daily recovery capacity for oil recovery devices equal to 50 percent of the planning volume applicable for the facility as determined in section 4.1 of this appendix. The effective daily recovery capacity for oil recovery devices identified in the plan must be determined using the criteria in section 6 of this appendix.

4.5 In addition to oil recovery capacity, the plan shall, as appropriate, identify sufficient quantity of containment boom available, by contract or other approved means as described in §112.2, to arrive within the required response times for oil collection and containment and for protection of fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see appendix E to this part, section 13, for availability) and the applicable ACP. Although 40 CFR part 112 does not set required quantities of boom for oil collection and containment, the response plan shall identify and ensure, by contract or other approved means as described in §112.2, the availability of the quantity of boom identified in the plan for this purpose.

4.6 The plan must indicate the availability of temporary storage capacity to meet section 12.2 of this appendix. If available storage capacity is insufficient to meet this level, then the effective daily recovery capacity must be derated (downgraded) to the limits of the available storage capacity.

4.7 The following is an example of a medium discharge volume planning calculation for equipment identification in a higher volume port area: The facility's largest abovereground storage tank volume is 840,000 gallons. Ten percent of this capacity is 84,000 gallons. Because 10 percent of the facility's largest tank, or 84,000 gallons, is greater than 36,000 gallons, 36,000 gallons is used as the planning volume. The effective daily recovery capacity is 50 percent of the planning volume, or 18,000 gallons per day. The ability of oil recovery devices to meet this capacity must be calculated using the procedures in section 6 of this appendix. Temporary storage capacity available on-scene must equal twice the daily recovery capacity as indicated in section 12.2 of this appendix, or 36,000 gallons per day. This is the information the facility owner or operator must use to identify and ensure the availability of the required response resources, by contract or other approved means as described in §112.2. The facility owner shall also identify how much boom is available for use.

5.0 Determining Response Resources Required for the Worst Case Discharge to the Maximum Extent Practicable

5.1 A facility owner or operator shall identify and ensure the availability of, by contract or other approved means as described in §112.2, sufficient response resources to respond to the worst case discharge of oil to the maximum extent practicable. Sections 7 and 10 of this appendix describe the method to determine the necessary response resources. Worksheets are provided as Attachments E-1 and E-2 at the end of this appendix to simplify the procedures involved in calculating the planning volume for response resources for the worst case discharge.

5.2 Complexes that are regulated by EPA and the USCG must also consider planning for the worst case discharge at the transportation-related portion of the facility. The USCG requires that transportation-related facility owners or operators use a different calculation for the worst case discharge in the revisions to 33 CFR part 154. Owners or operators of complex facilities that are regulated by EPA and the USCG must compare both calculations of worst case discharge derived by EPA and the USCG and plan for whichever volume is greater.

5.3 Oil discharge response resources identified in the response plan and available, by contract or other approved means as described in §112.2, to meet the applicable worst case discharge planning volume must be located such that they are capable of arriving at the scene of a discharge within the times specified for the applicable response tier listed as follows

<table>
<thead>
<tr>
<th></th>
<th>Tier 1 (in hours)</th>
<th>Tier 2 (in hours)</th>
<th>Tier 3 (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher volume port areas</td>
<td>6</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>12</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>All other river and canal, inland, and nearshore areas</td>
<td>12</td>
<td>36</td>
<td>60</td>
</tr>
</tbody>
</table>

The three levels of response tiers apply to the amount of time in which facility owners or operators must plan for response resources to arrive at the scene of a discharge to respond to the worst case discharge planning volume. For example, at a worst case discharge in an inland area, the first tier of response resources (i.e., that amount of on-water and shoreline cleanup capacity necessary to respond to the fraction of the worst case discharge as indicated through the series of steps described in sections 7.2 and 7.3 or sections 10.2 and 10.3 of this appendix) would arrive at the scene of the discharge within 12 hours; the second tier of response resources would arrive within 36 hours; and the third tier of response resources would arrive within 60 hours.

5.4 The effective daily recovery capacity for oil recovery devices identified in the response plan must be determined using the criteria in section 6 of this appendix. A facility owner or operator shall identify the storage locations of all response resources used for each tier. The owner or operator of a facility whose required daily recovery capacity exceeds the applicable contracting caps in Table 5 of this appendix shall, as appropriate, identify sources of additional equipment, their location, and the arrangements made to obtain this equipment during a response. The owner or operator of a facility whose calculated planning volume exceeds the applicable contracting caps in Table 5 of this appendix shall, as appropriate, identify sources of additional equipment equal to twice the cap listed in Tier 3 or the amount necessary to reach the calculated planning volume, whichever is lower. The resources identified above the cap shall be capable of arriving on-scene not later than the Tier 3 response times in section 5.3 of this appendix. No contract is required. While general listings of available response equipment may be used to identify additional sources (i.e., “public” resources vs. “private” resources), the response plan shall identify the specific sources, locations, and quantities of equipment that a facility owner or operator has considered in his or her planning. When listing USCG-classified oil spill removal organization(s) that have sufficient removal capacity to recover the volume above the response capacity cap for the specific facility, as specified in Table 5 of this appendix, it is not necessary to list specific quantities of equipment.

5.5 A facility owner or operator shall identify the availability of temporary storage capacity to meet section 12.2 of this appendix. If available storage capacity is insufficient, then the effective daily recovery capacity must be derated (downgraded) to the limits of the available storage capacity.

5.6 When selecting response resources necessary to meet the response plan requirements, the facility owner or operator shall, as appropriate, ensure that a portion of those resources is capable of being used in close-to-shore response activities in shallow water. For any EPA-regulated facility that is required to
plan for response in shallow water, at least 20 percent of the on-water response equipment identified for the applicable operating area shall, as appropriate, be capable of operating in water of 6 feet or less depth.

5.7 In addition to oil spill recovery devices, a facility owner or operator shall identify sufficient quantities of boom that are available, by contract or other approved means as described in §112.2, to arrive on-scene within the specified response times for oil containment and collection. The specific quantity of boom required for collection and containment will depend on the facility-specific information and response strategies employed. A facility owner or operator shall, as appropriate, also identify sufficient quantities of oil containment boom to protect fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see appendix E to this part, section 13, for availability), and the applicable ACP. Refer to this guidance document for the number of days and geographic areas (i.e., operating environments) specified in Table 2 and Table 6 of this appendix.

5.8 A facility owner or operator shall also identify, by contract or other approved means as described in §112.2, the availability of an oil spill removal organization(s) (as described in §112.2) capable of responding to a shoreline cleanup operation involving the calculated volume of oil and emulsified oil that might impact the affected shoreline. The volume of oil that shall, as appropriate, be planned for is calculated through the application of factors contained in Tables 2, 3, 6, and 7 of this appendix. The volume calculated from these tables is intended to assist the facility owner or operator to identify an oil spill removal organization with sufficient resources and expertise.

6.0 Determining Effective Daily Recovery Capacity for Oil Recovery Devices

6.1 Oil recovery devices identified by a facility owner or operator must be identified by the manufacturer, model, and effective daily recovery capacity. These capacities must be used to determine whether there is sufficient capacity to meet the applicable planning criteria for a small discharge, a medium discharge, and a worst case discharge to the maximum extent practicable.

6.2 To determine the effective daily recovery capacity of oil recovery devices, the formula listed in section 6.2.1 of this appendix shall be used. This formula considers potential limitations due to available daylight, weather, sea state, and percentage of emulsified oil in the recovered material. The RA may assign a lower efficiency factor to equipment listed in a response plan if it is determined that such a reduction is warranted.

6.2.1 The following formula shall be used to calculate the effective daily recovery capacity:

\[R = T \times 24 \text{ hours} \times E \]

where:

\[R \] — Effective daily recovery capacity;
\[T \] — Throughput rate in barrels per hour (nameplate capacity); and
\[E \] — 20 percent efficiency factor (or lower factor as determined by the Regional Administrator).

6.2.2 For those devices in which the pump limits the throughput of liquid, throughput rate shall be calculated using the pump capacity.

6.2.3 For belt or moptype devices, the throughput rate shall be calculated using the speed of the belt or mop through the device, assumed thickness of oil adhering to or collected by the device, and surface area of the belt or mop. For purposes of this calculation, the assumed thickness of oil will be 1/4 inch.

6.2.4 Facility owners or operators that include oil recovery devices whose throughput is not measurable using a pump capacity or belt/mop speed may provide information to support an alternative method of calculation. This information must be submitted following the procedures in section 6.3.2 of this appendix.

6.3 As an alternative to section 6.2 of this appendix, a facility owner or operator may submit adequate evidence that a different effective daily recovery capacity should be applied for a specific oil recovery device. Adequate evidence is actual verified performance data in discharge conditions or tests using American Society of Testing and Materials (ASTM) Standard F 631-99, F 808-83 (1999), or an equivalent test approved by EPA as deemed appropriate (see Appendix E to this part, section 13, for general availability of documents).

6.3.1 The following formula must be used to calculate the effective daily recovery capacity under this alternative:

\[R = D \times U \]

where:

\[R \] — Effective daily recovery capacity;
\[D \] — Average Oil Recovery Rate in barrels per hour (Item 26 in F 808-83; Item 13.2.16 in F 631-99; or actual performance data); and
\[U \] — Hours per day that equipment can operate under discharge conditions. Ten hours per day must be used unless a facility owner or operator can demonstrate that the recovery operation can be sustained for longer periods.

6.3.2 A facility owner or operator submitting a response plan shall provide data that supports the effective daily recovery capacities for the oil recovery devices listed. The following is an example of these calculations:

(1) A weir skimmer identified in a response plan has a manufacturer's rated throughput at the pump of 267 gallons per minute (gpm).

\[267 \text{ gpm} = 381 \text{ barrels per hour (bph)} \]

\[R = 381 \text{ bph} \times 24 \text{ hr/day} \times 0.2 = 1,829 \text{ barrels per day} \]

(2) After testing using ASTM procedures, the skimmer's oil recovery rate is determined to be 220 gpm. The facility owner or operator identifies sufficient resources available to support operations for 12 hours per day.

\[220 \text{ gpm} = 314 \text{ bph} \]

\[R = 314 \text{ bph} \times 12 \text{ hr/day} = 3,768 \text{ barrels per day} \]

(3) The facility owner or operator will be able to use the higher capacity if sufficient temporary oil storage capacity is available. Determination of alternative
Calculating Planning Volumes for a Worst Case Discharge—Petroleum Oils and Non-Petroleum Oils Other Than Animal Fats and Vegetable Oils

The following procedures must be used by a facility owner or operator in determining the required on-water oil recovery capacity:

7.2.1 The following must be determined: the worst case discharge volume of oil in the facility; the appropriate group(s) for the types of oil handled, stored, or transported at the facility [persistent (Groups 2, 3, 4, 5) or non-persistent (Group 1)]; and the facility's specific operating area. See sections 1.2.3 and 1.2.8 of this appendix for the definitions of non-persistent and persistent oils, respectively. Facilities that handle, store, or transport oil from different oil groups must calculate each group separately, unless the oil group constitutes 10 percent or less by volume of the facility's total oil storage capacity. This information is to be used with Table 2 of this appendix to determine the percentages of the total volume to be used for removal capacity planning. Table 2 of this appendix divides the volume into three categories: oil lost to the environment; oil deposited on the shoreline; and oil available for on-water recovery.

7.2.2 The on-water oil recovery volume shall, as appropriate, be adjusted using the appropriate emulsification factor found in Table 3 of this appendix. Facilities that handle, store, or transport oil from different petroleum groups must compare the on-water recovery volume for each oil group (unless the oil group constitutes 10 percent or less by volume of the facility's total storage capacity) and use the calculation that results in the largest on-water oil recovery volume to plan for the amount of response resources for a worst case discharge.

7.2.3 The adjusted volume is multiplied by the on-water oil recovery resource mobilization factor found in Table 4 of this appendix from the appropriate operating area and response tier to determine the total on-water oil recovery capacity in barrels per day that must be identified or contracted to arrive on-scene within the applicable time for each response tier. Three tiers are specified. For higher volume port areas, the contracted tiers of resources must be located such that they are capable of arriving on-scene within 6 hours for Tier 1, 30 hours for Tier 2, and 54 hours for Tier 3 of the discovery of an oil discharge. For all other rivers and canals, inland, nearshore areas, and the Great Lakes, these tiers are 12, 36, and 60 hours.

7.2.4 The resulting on-water oil recovery capacity in barrels per day for each tier is used to identify response resources necessary to sustain operations in the applicable operating area. The equipment shall be capable of sustaining operations for the time period specified in Table 2 of this appendix. The facility owner or operator shall identify and ensure the availability, by contract or other approved means as described in §112.2, of sufficient oil spill recovery devices to provide the effective daily oil recovery capacity required. If the required capacity exceeds the applicable cap specified in Table 5 of this appendix, then a facility owner or operator shall ensure, by contract or other approved means as described in §112.2, only for the quantity of resources required to meet the cap, but shall identify sources of additional resources as indicated in section 5.4 of this appendix. The owner or operator of a facility whose planning volume exceeded the cap in 1993 must make arrangements to identify and ensure the availability, by contract or other approved means as described in §112.2, for additional capacity to be under contract by 1998 or 2003, as appropriate. For a facility that handles multiple groups of oil, the required effective daily recovery capacity for each oil group is calculated before applying the cap. The oil group calculation resulting in the largest on-water recovery volume must be used to plan for the amount of response resources for a worst case discharge, unless the oil group comprises 10 percent or less by volume of the facility's total oil storage capacity.

7.3 The procedures discussed in sections 7.3.1-7.3.3 of this appendix must be used to calculate the planning volume for identifying shoreline cleanup capacity (for Group 1 through Group 4 oils).

7.3.1 The following must be determined: the worst case discharge volume of oil for the facility; the appropriate group(s) for the types of oil handled, stored, or transported at the facility [persistent (Groups 2, 3, or 4) or non-persistent (Group 1)]; and the geographic area(s) in which the facility operates (i.e., operating areas). For a facility handling, storing, or transporting oil from different groups, each group must be calculated separately. Using this information, Table 2 of this appendix must be used to determine the percentages of the total volume to be used for shoreline cleanup resource planning.

7.3.2 The shoreline cleanup planning volume must be adjusted to reflect an emulsification factor using the same procedure as described in section 7.2.2 of this appendix.

7.3.3 The resulting volume shall be used to identify an oil spill removal organization with the appropriate shoreline cleanup capability.

7.4 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports Group 1 through Group 4 oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The facility owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan must also identify an individual located at the facility to work with the fire department for Group 1 through Group 4 oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to a worst case scenario. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility.

7.5 The following is an example of the procedure described above in sections 7.2 and 7.3 of this appendix: A facility with a 270,000 barrel (11.3 million gallons) capacity for #6 oil (specific gravity 0.96) is located in a higher volume port area. The facility is on a peninsula and has docks on both the ocean and bay sides. The facility has four aboveground oil storage tanks with a combined total capacity of 80,000 barrels (3.36 million gallons) and no secondary containment. The remaining facility tanks are inside secondary containment structures. The largest aboveground oil storage tank (90,000 barrels or 3.78 million gallons) has its own secondary containment. Two 50,000 barrel (2.1 million gallon) tanks (that are not connected by a manifold) are within a common secondary containment tank area, which is capable of holding 100,000 barrels (4.2 million gallons) plus sufficient freeboard.

7.5.1 The worst case discharge for the facility is calculated by adding the capacity of all aboveground oil storage tanks without secondary containment (80,000 barrels) plus the capacity of the largest aboveground oil storage tank inside secondary containment. The resulting worst case discharge volume is 170,000 barrels or 7.14 million gallons.

7.5.2 Because the requirements for Tiers 1, 2, and 3 for inland and nearshore exceed the caps identified in Table 5 of this appendix, the facility owner will
contract for a response to 10,000 barrels per day (bpd) for Tier 1, 20,000 bpd for Tier 2, and 40,000 bpd for Tier 3. Resources for the remaining 7,850 bpd for Tier 1, 9,750 bpd for Tier 2, and 7,600 bpd for Tier 3 shall be identified but need not be contracted for in advance. The facility owner or operator shall, as appropriate, also identify or contract for quantities of boom identified in their response plan for the protection of fish and wildlife and sensitive environments within the area potentially impacted by a worst case discharge from the facility. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA’s “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments,” (see appendix E to this part, section 13, for availability) and the applicable ACP. Attachment C-III to Appendix C provides a method for calculating a planning distance to fish and wildlife and sensitive environments and public drinking water intakes that may be impacted in the event of a worst case discharge.

7.6 The procedures discussed in sections 7.6.1-7.6.3 of this appendix must be used to determine appropriate response resources for facilities with Group 5 oils.

7.6.1 The owner or operator of a facility that handles, stores, or transports Group 5 oils shall, as appropriate, identify the response resources available by contract or other approved means, as described in §112.2. The equipment identified in a response plan shall, as appropriate, include:

(1) Sonar, sampling equipment, or other methods for locating the oil on the bottom or suspended in the water column;
(2) Containment boom, sorbent boom, silt curtains, or other methods for containing the oil that may remain floating on the surface or to reduce spreading on the bottom;
(3) Dredges, pumps, or other equipment necessary to recover oil from the bottom and shoreline;
(4) Equipment necessary to assess the impact of such discharges; and
(5) Other appropriate equipment necessary to respond to a discharge involving the type of oil handled, stored, or transported.

7.6.2 Response resources identified in a response plan for a facility that handles, stores, or transports Group 5 oils under section 7.6.1 of this appendix shall be capable of being deployed (on site) within 24 hours of discovery of a discharge to the area where the facility is operating.

7.6.3 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports Group 5 oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The facility owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan shall also identify an individual located at the facility to work with the fire department for Group 5 oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to respond to a worst case discharge. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility.

7.7 Non-petroleum oils other than animal fats and vegetable oils. The procedures described in sections 7.7.1 through 7.7.5 of this appendix must be used to determine appropriate response plan development and evaluation criteria for facilities that handle, store, or transport non-petroleum oils other than animal fats and vegetable oils. Refer to section 11 of this appendix for information on the limitations on the use of chemical agents for inland and nearshore areas.

7.7.1 An owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils must provide information in his or her plan that identifies:

(1) Procedures and strategies for responding to a worst case discharge to the maximum extent practicable; and
(2) Sources of the equipment and supplies necessary to locate, recover, and mitigate such a discharge.

7.7.2 An owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils must ensure that any equipment identified in a response plan is capable of operating in the conditions expected in the geographic area(s) (i.e., operating environments) in which the facility operates using the criteria in Table 1 of this appendix. When evaluating the operability of equipment, the facility owner or operator must consider limitations that are identified in the appropriate ACPs, including:

(1) Ice conditions;
(2) Debris;
(3) Temperature ranges; and
(4) Weather-related visibility.

7.7.3 The owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils must ensure that the response resources that are available by contract or other approved means, as described in §112.2. The equipment described in the response plan shall, as appropriate, include:

(1) Containment boom, sorbent boom, or other methods for containing oil floating on the surface or to protect shorelines from impact;
(2) Oil recovery devices appropriate for the type of non-petroleum oil carried; and
(3) Other appropriate equipment necessary to respond to a discharge involving the type of oil carried.

7.7.4 Response resources identified in a response plan according to section 7.7.3 of this appendix must be capable of commencing an effective on-scene response within the applicable tier response times in section 5.3 of this appendix.

7.7.5 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan must also identify an individual located at the facility to work with the fire department for fires of these oils. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to a worst case scenario. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility.
8.0 Determining Response Resources Required for Small Discharges—Animal Fats and Vegetable Oils

8.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in § 112.2, to respond to a small discharge of animal fats or vegetable oils. A small discharge is defined as any discharge volume less than or equal to 2,100 gallons, but not to exceed the calculated worst case discharge. The equipment must be designed to function in the operating environment at the point of expected use.

8.2 Complexes that are regulated by EPA and the USCG must also consider planning quantities for the marine transportation-related portion of the facility.

8.2.1 The USCG planning level that corresponds to EPA’s “small discharge” is termed “the average most probable discharge.” A USCG rule found at 33 CFR 154.1020 defines “the average most probable discharge” as the lesser of 50 barrels (2,100 gallons) or 1 percent of the volume of the worst case discharge. Owners or operators of complexes that handle, store, or transport animal fats and vegetable oils must compare oil discharge volumes for a small discharge and an average most probable discharge, and plan for whichever quantity is greater.

8.3 The response resources shall, as appropriate, include:

8.3.1 One thousand feet of containment boom (or, for complexes with marine transfer components, 1,000 feet of containment boom or two times the length of the largest vessel that regularly conducts oil transfers to or from the facility, whichever is greater), and a means of deploying it within 1 hour of the discovery of a discharge;

8.3.2 Oil recovery devices with an effective daily recovery capacity equal to the amount of oil discharged in a small discharge or greater which is available at the facility within 2 hours of the detection of a discharge; and

8.3.3 Oil storage capacity for recovered oily material indicated in section 12.2 of this appendix.

9.0 Determining Response Resources Required for Medium Discharges—Animal Fats and Vegetable Oils

9.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in § 112.2, to respond to a medium discharge of animal fats or vegetable oils for that facility. This will require response resources capable of containing and collecting up to 36,000 gallons of oil or 10 percent of the worst case discharge, whichever is less. All equipment identified must be designed to operate in the applicable operating environment specified in Table 1 of this appendix.

9.2 Complexes that are regulated by EPA and the USCG must also consider planning quantities for the transportation-related transfer portion of the facility. Owners or operators of complexes that handle, store, or transport animal fats or vegetable oils must plan for oil discharge volumes for a medium discharge. For non-petroleum oils, there is no USCG planning level that directly corresponds to EPA’s “medium discharge.” Although the USCG does not have planning requirements for medium discharges, they do have requirements (at 33 CFR 154.545) to identify equipment to contain oil resulting from an operational discharge.

9.3 Oil recovery devices identified to meet the applicable medium discharge volume planning criteria must be located such that they are capable of arriving on-scene within 6 hours in higher volume port areas and the Great Lakes and within 12 hours in all other areas. Higher volume port areas and Great Lakes areas are defined in section 1.1 of appendix C to this part.

9.4 Because rapid control, containment, and removal of oil are critical to reduce discharge impact, the owner or operator must determine response resources using an effective daily recovery capacity for oil recovery devices equal to 50 percent of the planning volume applicable for the facility as determined in section 9.1 of this appendix. The effective daily recovery capacity for oil recovery devices identified in the plan must be determined using the criteria in section 6 of this appendix.

9.5 In addition to oil recovery capacity, the plan shall, as appropriate, identify sufficient quantity of containment boom available, by contract or other approved means as described in § 112.2, to arrive within the required response times for oil collection and containment and for protection of fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA’s “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (59 FR 14713-22, March 29, 1994) and the applicable ACP. Although 40 CFR part 112 does not set required quantities of boom for oil collection and containment, the response plan shall identify and ensure, by contract or other approved means as described in § 112.2, the availability of the quantity of boom identified in the plan for this purpose.

9.6 The plan must indicate the availability of temporary storage capacity to meet section 12.2 of this appendix. If available storage capacity is insufficient to meet this level, then the effective daily recovery capacity must be derated (downgraded) to the limits of the available storage capacity.

9.7 The following is an example of a medium discharge volume planning calculation for equipment identification in a higher volume port area:

“The facility's largest aboveground storage tank volume is 840,000 gallons. Ten percent of this capacity is 84,000 gallons. Because 10 percent of the facility’s largest tank, or 84,000 gallons, is greater than 36,000 gallons, 36,000 gallons is used as the planning volume. The effective daily recovery capacity is 50 percent of the planning volume, or 18,000 gallons per day. The ability of oil recovery devices to meet this capacity must be calculated using the procedures in section 6 of this appendix. Temporary storage capacity available on-scene must equal twice the daily recovery capacity as indicated in section 12.2 of this appendix, or 36,000 gallons per day. This is the information the facility owner or operator must use to identify and ensure the availability of the required response resources, by contract or other approved means as described in § 112.2. The facility owner shall also identify how much boom is available for use.

10.0 Calculating Planning Volumes for a Worst Case Discharge—Animal Fats and Vegetable Oils.

10.1 A facility owner or operator shall plan for a response to the facility’s worst case discharge. The planning for on-water oil recovery must take into account a loss of some oil to the environment due to physical, chemical, and biological processes, potential increases in volume due to emulsification, and the potential for deposition of oil on the shoreline or on sediments. The response planning procedures for animal fats and vegetable oils are discussed in section 10.7 of this appendix. You may use alternate response planning procedures for animal fats and vegetable oils if those procedures result in environmental protection equivalent to that provided by the procedures in section 10.7 of this appendix.

10.2 The following procedures must be used by a facility owner or operator in determining the required on-water oil recovery capacity:

10.2.1 The following must be determined: the worst case discharge volume of oil in the facility; the appropriate group(s) for the types of oil handled, stored,
or transported at the facility (Groups A, B, C); and the facility's specific operating area. See sections 1.2.1 and 1.2.9 of this appendix for the definitions of animal fats and vegetable oils and groups thereof. Facilities that handle, store, or transport oil from different oil groups must calculate each group separately, unless the oil group constitutes 10 percent or less by volume of the facility's total oil storage capacity. This information is to be used with Table 6 of this appendix to determine the percentages of the total volume to be used for removal capacity planning. Table 6 of this appendix divides the volume into three categories: oil lost to the environment; oil deposited on the shoreline; and oil available for on-water recovery.

10.2.2 The on-water oil recovery volume shall, as appropriate, be adjusted using the appropriate emulsification factor found in Table 7 of this appendix. Facilities that handle, store, or transport oil from different groups must compare the on-water recovery volume for each oil group (unless the oil group constitutes 10 percent or less by volume of the facility's total storage capacity) and use the calculation that results in the largest on-water oil recovery volume to plan for the amount of response resources for a worst case discharge.

10.2.3 The adjusted volume is multiplied by the on-water oil recovery resource mobilization factor found in Table 4 of this appendix from the appropriate operating area and response tier to determine the total on-water oil recovery capacity in barrels per day that must be identified or contracted to arrive on-scene within the applicable time for each response tier. Three tiers are specified. For higher volume port areas, the contracted tiers of resources must be located such that they are capable of arriving on-scene within 6 hours for Tier 1, 30 hours for Tier 2, and 54 hours for Tier 3 of the discovery of a discharge. For all other rivers and canals, inland, nearshore areas, and the Great Lakes, these tiers are 12, 36, and 60 hours.

10.2.4 The resulting on-water oil recovery capacity in barrels per day for each tier is used to identify response resources necessary to sustain operations in the applicable operating area. The equipment shall be capable of sustaining operations for the time period specified in Table 6 of this appendix. The facility owner or operator shall identify and ensure, by contract or other approved means as described in §112.2, the availability of sufficient oil spill recovery devices to provide the effective daily oil recovery capacity required. If the required capacity exceeds the applicable cap specified in Table 5 of this appendix, then a facility owner or operator shall ensure, by contract or other approved means as described in §112.2, only for the quantity of resources required to meet the cap, but shall identify sources of additional resources as indicated in section 5.4 of this appendix. The owner or operator of a facility whose planning volume exceeded the cap in 1998 must make arrangements to identify and ensure, by contract or other approved means as described in §112.2, the availability of additional capacity to be under contract by 2003, as appropriate. For a facility that handles multiple groups of oil, the required effective daily recovery capacity for each oil group is calculated before applying the cap. The oil group calculation resulting in the largest on-water recovery volume must be used to plan for the amount of response resources for a worst case discharge, unless the oil group comprises 10 percent or less by volume of the facility's oil storage capacity.

10.3 The procedures discussed in sections 10.3.1 through 10.3.3 of this appendix must be used to calculate the planning volume for identifying shoreline cleanup capacity (for Groups A and B oils).

10.3.1 The following must be determined: the worst case discharge volume of oil for the facility; the appropriate group(s) for the types of oil handled, stored, or transported at the facility (Groups A or B); and the geographic area(s) in which the facility operates (i.e., operating areas). For a facility handling, storing, or transporting oil from different groups, each group must be calculated separately. Using this information, Table 6 of this appendix must be used to determine the percentages of the total volume to be used for shoreline cleanup resource planning.

10.3.2 The shoreline cleanup planning volume must be adjusted to reflect an emulsification factor using the same procedure as described in section 10.2.2 of this appendix.

10.3.3 The resulting volume shall be used to identify an oil spill removal organization with the appropriate shoreline cleanup capability.

10.4 A response plan must identify response resources with fire fighting capability appropriate for the risk of fire and explosion at the facility from the discharge or threat of discharge of oil. The owner or operator of a facility that handles, stores, or transports Group A or B oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The facility owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan must also identify an individual to work with the fire department for Group A or B oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to a worst case scenario. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility.

10.5 The following is an example of the procedure described in sections 10.2 and 10.3 of this appendix. A facility with a 37.04 million gallon (881,904 barrel) capacity of several types of vegetable oils is located in the Inland Operating Area. The vegetable oil with the highest specific gravity stored at the facility is soybean oil (specific gravity 0.922, Group B vegetable oil). The facility has ten aboveground oil storage tanks with a combined total capacity of 18 million gallons (428,571 barrels) and without secondary containment. The remaining facility tanks are inside secondary containment structures. The largest aboveground oil storage tank (3 million gallons or 71,428 barrels) has its own secondary containment. Two 2.1 million gallon (50,000 barrel) tanks (that are not connected by a manifold) are within a common secondary containment tank area, which is capable of holding 4.2 million gallons (100,000 barrels) plus sufficient freeboard.

10.5.1 The worst case discharge for the facility is calculated by adding the capacity of all aboveground vegetable oil storage tanks without secondary containment (18.0 million gallons) plus the capacity of the largest aboveground storage tank inside secondary containment (3.0 million gallons). The resulting worst case discharge is 21 million gallons or 500,000 barrels.

10.5.2 With a specific worst case discharge identified, the planning volume for on-water recovery can be identified as follows:

| Worst case discharge: 21 million gallons (500,000 barrels) of Group B vegetable oil |
| Operating Area: Inland |
| Planned percent recovered floating vegetable oil (from Table 6, column Nearshore/Inland/Great Lakes): Inland, Group B is 20% |
| Emulsion factor (from Table 7): 2.0 |
| Planning volumes for on-water recovery: 21,000,000 gallons × 0.2 × 2.0 = 8,400,000 gallons or 200,000 barrels. |
| Determine required resources for on-water recovery for each of the three tiers using mobilization factors (from Table 4, column Inland/Nearshore/Great Lakes) |

Inland Operating Area Tier 1 Tier 2 Tier 3
10.5.3 Because the requirements for On-Water Recovery Resources for Tiers 1, 2, and 3 for Inland Operating Area exceed the caps identified in Table 5 of this appendix, the facility owner will contract for a response of 12,500 barrels per day (bpd) for Tier 1, 25,000 bpd for Tier 2, and 50,000 bpd for Tier 3. Resources for the remaining 17,500 bpd for Tier 1, 25,000 bpd for Tier 2, and 30,000 bpd for Tier 3 shall be identified but need not be contracted for in advance.

10.5.4 With the specific worst case discharge identified, the planning volume of onshore recovery can be identified as follows:

\[
\text{Worst case discharge: 21 million gallons (500,000 barrels) of Group B vegetable oil}
\]

\[
\text{Operating Area: Inland}
\]

\[
\text{Planned percent recovered floating vegetable oil from onshore (from Table 6, column Nearshore/Inland/Great Lakes): Inland, Group B is 65%}
\]

\[
\text{Emulsion factor (from Table 7): 2.0}
\]

\[
\text{Planning volumes for shoreline recovery:}
\]

\[
21,000,000 \text{ gallons} \times 0.65 \times 2.0 = 27,300,000 \text{ gallons or 650,000 barrels}
\]

10.5.5 The facility owner or operator shall, as appropriate, also identify or contract for quantities of boom identified in the response plan for the protection of fish and wildlife and sensitive environments within the area potentially impacted by a worst case discharge from the facility. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments," (see Appendix E to this part, section 13, for availability) and the applicable ACP. Attachment C-III to Appendix C provides a method for calculating a planning distance to fish and wildlife and sensitive environments and public drinking water intakes that may be adversely affected in the event of a worst case discharge.

10.6 The procedures discussed in sections 10.6.1 through 10.6.3 of this appendix must be used to determine appropriate response resources for facilities with Group C oils.

10.6.1 The owner or operator of a facility that handles, stores, or transports Group C oils shall, as appropriate, identify the response resources available by contract or other approved means, as described in § 112.2. The equipment identified in a response plan shall, as appropriate, include:

(1) Sonar, sampling equipment, or other methods for locating the oil on the bottom or suspended in the water column;

(2) Containment boom, sorbent boom, silt curtains, or other methods for containing the oil that may remain floating on the surface or to reduce spreading on the bottom;

(3) Dredges, pumps, or other equipment necessary to recover oil from the bottom and shoreline;

(4) Equipment necessary to assess the impact of such discharges; and

(5) Other appropriate equipment necessary to respond to a discharge involving the type of oil handled, stored, or transported.

10.6.2 Response resources identified in a response plan for a facility that handles, stores, or transports Group C oils under section 10.6.1 of this appendix shall be capable of being deployed on scene within 24 hours of discovery of a discharge.

10.6.3 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports Group C oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The owner or operator shall ensure, by contract or other approved means as described in § 112.2, the availability of these resources. The response plan shall also identify an individual located at the facility to work with the fire department for Group C oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to respond to a worst case discharge. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility.

10.7 The procedures described in sections 10.7.1 through 10.7.5 of this appendix must be used to determine appropriate response plan development and evaluation criteria for facilities that handle, store, or transport animal fats and vegetable oils. Refer to section 11 of this appendix for information on the limitations on the use of chemical agents for inland and nearshore areas.

10.7.1 An owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils must provide information in the response plan that identifies:

(1) Procedures and strategies for responding to a worst case discharge of animal fats and vegetable oils to the maximum extent practicable; and

(2) Sources of the equipment and supplies necessary to locate, recover, and mitigate such a discharge.

10.7.2 An owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils must ensure that any equipment identified in a response plan is capable of operating in the geographic area(s) (i.e., operating environments) in which the facility operates using the criteria in Table 1 of this appendix. When evaluating the operability of equipment, the facility owner or operator must consider limitations that are identified in the appropriate ACPs, including:

(1) Ice conditions;

(2) Debris;

(3) Temperature ranges; and

(4) Weather-related visibility.

10.7.3 The owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils must identify the response resources that are available by contract or other approved means, as described in § 112.2. The equipment described in the response plan shall, as appropriate, include:

<table>
<thead>
<tr>
<th>Mobilization factor by which you multiply planning volume</th>
<th>15</th>
<th>25</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Daily Recovery Capacity (bbls)</td>
<td>30,000</td>
<td>50,000</td>
<td>80,000</td>
</tr>
</tbody>
</table>
(1) Containment boom, sorbent boom, or other methods for containing oil floating on the surface or to protect shorelines from impact;
(2) Oil recovery devices appropriate for the type of animal fat or vegetable oil carried; and
(3) Other appropriate equipment necessary to respond to a discharge involving the type of oil carried.

10.7.4 Response resources identified in a response plan according to section 10.7.3 of this appendix must be capable of commencing an effective on-scene response within the applicable tier response times in section 5.3 of this appendix.

10.7.5 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan shall also identify an individual located at the facility to work with the fire department for animal fat and vegetable oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to respond to a worst case discharge. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility.

11.0 Determining the Availability of Alternative Response Methods

11.1 For chemical agents to be identified in a response plan, they must be on the NCP Product Schedule that is maintained by EPA. (Some States have a list of approved dispersants for use within State waters. Not all of these State-approved dispersants are listed on the NCP Product Schedule.)

11.2 Identification of chemical agents in the plan does not imply that their use will be authorized. Actual authorization will be governed by the provisions of the NCP and the applicable ACP.

12.0 Additional Equipment Necessary to Sustain Response Operations

12.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a medium discharge of animal fats or vegetable oils for that facility. This will require response resources capable of containing and collecting up to 36,000 gallons of oil or 10 percent of the worst case discharge, whichever is less. All equipment identified must be designed to operate in the applicable operating environment specified in Table 1 of this appendix.

12.2 A facility owner or operator shall evaluate the availability of adequate temporary storage capacity to sustain the effective daily recovery capacities from equipment identified in the plan. Because of the inefficiencies of oil spill recovery devices, response plans must identify daily storage capacity equivalent to twice the effective daily recovery capacity required on-scene. This temporary storage capacity may be reduced if a facility owner or operator can demonstrate by waste stream analysis that the efficiencies of the oil recovery devices, ability to decant waste, or the availability of alternative temporary storage or disposal locations will reduce the overall volume of oily material storage.

12.3 A facility owner or operator shall ensure that response planning includes the capability to arrange for disposal of recovered oil products. Specific disposal procedures will be addressed in the applicable ACP.

13.0 References and Availability

13.1 All materials listed in this section are part of EPA's rulemaking docket and are located in the Superfund Docket, 1235 Jefferson Davis Highway, Crystal Gateway 1, Arlington, Virginia 22202, Suite 105 (Docket Numbers SPCC-2P, SPCC-3P, and SPCC-9P). The docket is available for inspection between 9 a.m. and 4 p.m., Monday through Friday, excluding Federal holidays.

13.2 The docket will mail copies of materials to requestors who are outside the Washington, DC metropolitan area. Materials may be available from other sources, as noted in this section. As provided in 40 CFR part 2, a reasonable fee may be charged for copying services. The RCRA/Superfund Hotline at 800-424-9346 may also provide additional information on where to obtain documents. To contact the RCRA/Superfund Hotline in the Washington, DC metropolitan area, dial 703-412-9810. The Telecommunications Device for the Deaf (TDD) Hotline number is 800-553-7672, or, in the Washington, DC metropolitan area, 703-412-3323.

13.3 Documents

(1) National Preparedness for Response Exercise Program (PREP). The PREP draft guidelines are available from United States Coast Guard Headquarters (G-MEP-4), 2100 Second Street, SW., Washington, DC 20593. (See 58 FR 53990-91, October 19, 1993, Notice of Availability of PREP Guidelines).

Table 1 to Appendix E—Response Resource Operating Criteria

<table>
<thead>
<tr>
<th>Oil Recovery Devices</th>
<th>Operating environment</th>
<th>Significant wave height</th>
<th>Sea state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers and Canals</td>
<td>≤1 foot</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inland</th>
<th>≤3 feet</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Lakes</td>
<td>≤4 feet</td>
<td>2-3</td>
</tr>
<tr>
<td>Ocean</td>
<td>≤6 feet</td>
<td>3-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boom</th>
<th>Boom property</th>
<th>Use</th>
<th>Rivers and canals</th>
<th>Inland</th>
<th>Great Lakes</th>
<th>Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Wave Height</td>
<td>≤1</td>
<td>≤3</td>
<td>≤4</td>
<td>≤6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea State</td>
<td>1</td>
<td>2</td>
<td>2-3</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boom height— inches (draft plus freeboard)</td>
<td>6-18</td>
<td>18-42</td>
<td>18-42</td>
<td>≥42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserve Buoyancy to Weight Ratio</td>
<td>2:1</td>
<td>2:1</td>
<td>2:1</td>
<td>3:1 to 4:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Tensile Strength— pounds</td>
<td>4,500</td>
<td>15,000-20,000</td>
<td>15,000-20,000</td>
<td>≥20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skirt Fabric Tensile Strength— pounds</td>
<td>200</td>
<td>300</td>
<td>300</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skirt Fabric Tear Strength— pounds</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Oil recovery devices and boom shall be at least capable of operating in wave heights up to and including the values listed in Table 1 for each operating environment.

Table 2 to Appendix E—Removal Capacity Planning Table for Petroleum Oils

<table>
<thead>
<tr>
<th>Spill location</th>
<th>Sustainability of on-water oil recovery</th>
<th>Oil group 1</th>
<th>Rivers and canals</th>
<th>3 days</th>
<th>Percent natural dissipation</th>
<th>Percent recovered floating oil</th>
<th>Percent oil onshore</th>
<th>Nearshore/Inland/Great Lakes</th>
<th>4 days</th>
<th>Percent natural dissipation</th>
<th>Percent recovered floating oil</th>
<th>Percent oil onshore</th>
</tr>
</thead>
<tbody>
<tr>
<td>1—Non-persistent oils</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2—Light crudes</td>
<td>40</td>
<td>15</td>
<td>45</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3—Medium crudes and fuels</td>
<td>20</td>
<td>15</td>
<td>65</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4—Heavy crudes and fuels</td>
<td>5</td>
<td>20</td>
<td>75</td>
<td>10</td>
<td>50</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 The response resource considerations for non-petroleum oils other than animal fats and vegetable oils are outlined in section 7.7 of this appendix.

Note: Group 5 oils are defined in section 1.2.8 of this appendix; the response resource considerations are outlined in section 7.6 of this appendix.

Table 3 to Appendix E—Emulsification Factors for Petroleum Oil Groups 1

Non-Persistent Oil:			

Group 1	1.0		
Persistent Oil:			
Group 2	1.8		
Group 3	2.0		
Group 4	1.4		

Group 5 oils are defined in section 1.2.7 of this appendix; the response resource considerations are outlined in section 7.6 of this appendix.

1 See sections 1.2.2 and 1.2.7 of this appendix for group designations for non-persistent and persistent oils, respectively.

Table 4 to Appendix E—On-Water Oil Recovery Resource Mobilization Factors

<table>
<thead>
<tr>
<th>Operating area</th>
<th>Tier 1</th>
<th>Tier 2</th>
<th>Tier 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers and Canals</td>
<td>0.30</td>
<td>0.40</td>
<td>0.60</td>
</tr>
<tr>
<td>Inland/Nearshore Great Lakes</td>
<td>0.15</td>
<td>0.25</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Note: These mobilization factors are for total resources mobilized, not incremental response resources.

Table 5 to Appendix E—Response Capability Caps by Operating Area

<table>
<thead>
<tr>
<th>Date</th>
<th>Tier 1</th>
<th>Tier 2</th>
<th>Tier 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 18, 1993:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All except Rivers & Canals, Great Lakes</td>
<td>10K bbls/day</td>
<td>20K bbls/day</td>
<td>40K bbls/day</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>5K bbls/day</td>
<td>10K bbls/day</td>
<td>20K bbls/day</td>
</tr>
<tr>
<td>Rivers & Canals</td>
<td>1.5K bbls/day</td>
<td>3.0K bbls/day</td>
<td>6.0K bbls/day</td>
</tr>
<tr>
<td>February 18, 1998:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All except Rivers & Canals, Great Lakes</td>
<td>12.5K bbls/day</td>
<td>25K bbls/day</td>
<td>50K bbls/day</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>6.35K bbls/day</td>
<td>12.3K bbls/day</td>
<td>25K bbls/day</td>
</tr>
<tr>
<td>Rivers & Canals</td>
<td>1.875K bbls/day</td>
<td>3.75K bbls/day</td>
<td>7.5K bbls/day</td>
</tr>
<tr>
<td>February 18, 2003:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All except Rivers & Canals, Great Lakes</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Rivers & Canals</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Note: The caps show cumulative overall effective daily recovery capacity, not incremental increases.

TBD = To Be Determined.

Table 6 to Appendix E—Removal Capacity Planning Table for Animal Fats and Vegetable Oils

<table>
<thead>
<tr>
<th>Spill location</th>
<th>Sustainability of on-water oil recovery</th>
<th>Oil group</th>
<th>Rivers and canals</th>
<th>3 days</th>
<th>Percent natural loss</th>
<th>Percent recovered floating oil</th>
<th>Percent recovered oil from onshore</th>
<th>Nearshore/Inland/Great Lakes</th>
<th>4 days</th>
<th>Percent natural loss</th>
<th>Percent recovered floating oil</th>
<th>Percent recovered oil from onshore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>40</td>
<td>Group A</td>
<td>15</td>
<td>45</td>
<td>50</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td>20</td>
<td>Group B</td>
<td>15</td>
<td>65</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Substances with a specific gravity greater than 1.0 generally sink below the surface of the water. Response resource considerations are outlined in section 10.6 of this appendix. The owner or operator of the facility is responsible for determining appropriate response resources for Group C oils including locating oil on the bottom or suspended in the water column; containment boom or other appropriate methods for containing oil that may remain floating on the surface; and dredges, pumps, or other equipment to recover animal fats or vegetable oils from the bottom and shoreline.

Note: Group C oils are defined in sections 1.2.1 and 1.2.9 of this appendix; the response resource procedures are discussed in section 10.6 of this appendix.

Table 7 to Appendix E—Emulsification Factors for Animal Fats and Vegetable Oils

<table>
<thead>
<tr>
<th>Oil Group</th>
<th></th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Substances with a specific gravity greater than 1.0 generally sink below the surface of the water. Response resource considerations are outlined in section 10.6 of this appendix. The owner or operator of the facility is responsible for determining appropriate response resources for Group C oils including locating oil on the bottom or suspended in the water column; containment boom or other appropriate methods for containing oil that may remain floating on the surface; and dredges, pumps, or other equipment to recover animal fats or vegetable oils from the bottom and shoreline.

Note: Group C oils are defined in sections 1.2.1 and 1.2.9 of this appendix; the response resource procedures are discussed in section 10.6 of this appendix.

Attachments to Appendix E

[Please see PDF for image: ER30JN00.062]

[Please see PDF for image: ER30JN00.063]

[Please see PDF for image: ER30JN00.064]
Appendix F to Part 112—Facility-Specific Response Plan

Table of Contents

1.0 Model Facility-Specific Response Plan
1.1 Emergency Response Action Plan
1.2 Facility Information
1.3 Emergency Response Information
1.3.1 Notification
1.3.2 Response Equipment List
1.3.3 Response Equipment Testing/Deployment
1.3.4 Personnel
1.3.5 Evacuation Plans
1.3.6 Qualified Individual's Duties
1.4 Hazard Evaluation
1.4.1 Hazard Identification
1.4.2 Vulnerability Analysis
1.4.3 Analysis of the Potential for an Oil Spill
1.4.4 Facility Reportable Oil Spill History
1.5 Discharge Scenarios
1.5.1 Small and Medium Discharges
1.5.2 Worst Case Discharge
1.6 Discharge Detection Systems
1.6.1 Discharge Detection By Personnel
1.6.2 Automated Discharge Detection
1.7 Plan Implementation
1.7.1 Response Resources for Small, Medium, and Worst Case Spills
1.7.2 Disposal Plans
1.7.3 Containment and Drainage Planning
1.8 Self-Inspection, Drills/Exercises, and Response Training
1.8.1 Facility Self-Inspection
1.8.1.1 Tank Inspection
1.8.1.2 Response Equipment Inspection
1.8.1.3 Secondary Containment Inspection
1.8.2 Facility Drills/Exercises
1.8.2.1 Qualified Individual Notification Drill Logs
1.8.2.2 Spill Management Team Tabletop Exercise Logs
1.8.3 Response Training
1.8.3.1 Personnel Response Training Logs
1.8.3.2 Discharge Prevention Meeting Logs
1.9 Diagrams
1.10 Security
2.0 Response Plan Cover Sheet
3.0 Acronyms
4.0 References

1.0 Model Facility-Specific Response Plan

(A) Owners or operators of facilities regulated under this part which pose a threat of substantial harm to the environment by discharging oil into or on navigable waters or adjoining shorelines are required to prepare and submit facility-specific response plans to EPA in accordance with the provisions in this appendix. This appendix further describes the required elements in § 112.20(h).

(B) Response plans must be sent to the appropriate EPA Regional office. Figure F-1 of this Appendix lists each EPA Regional office and the address where owners or operators must submit their response plans. Those facilities deemed by the Regional Administrator (RA) to pose a threat of significant and substantial harm to the environment will have their plans reviewed and approved by EPA. In certain cases, information required in the model response plan is similar to information currently maintained in the facility's Spill Prevention, Control, and Countermeasures (SPCC) Plan as required by 40 CFR 112.3. In these cases, owners or operators may reproduce the information and include a photocopy in the response plan.

(C) A complex may develop a single response plan with a set of core elements for all regulating agencies and separate sections for the non-transportation-related and transportation-related components, as described in § 112.20(h). Owners or operators of large facilities that handle, store, or transport oil at more than one geographically distinct location (e.g., oil storage areas at opposite ends of a single, continuous parcel of property) shall, as appropriate, develop separate sections of the response plan for each storage area.

[Please see PDF for image: EC01MR92.015]

1.1 Emergency Response Action Plan

Several sections of the response plan shall be co-located for easy access by response personnel during an actual emergency or oil discharge. This collection of sections shall be called the Emergency Response Action Plan. The Agency intends that the Action Plan contain only as much information as is necessary to combat the discharge and be arranged so response actions are not delayed. The Action Plan may be arranged in a number of ways. For example, the sections of the Emergency Response Action Plan may be photocopies or condensed versions of the forms included in the associated sections of the response plan. Each Emergency Response Action Plan section may be tabbed for quick reference. The Action Plan shall be maintained in the front of the same binder that contains the complete response plan or it shall be contained in a separate binder. In the latter case, both binders shall be kept together so that the entire plan can be accessed by the qualified individual and appropriate spill response personnel. The Emergency Response Action Plan shall be made up of the following sections:

1. Qualified Individual Information (Section 1.2) partial
2. Emergency Notification Phone List (Section 1.3.1) partial
3. Spill Response Notification Form (Section 1.3.1) partial
4. Response Equipment List and Location (Section 1.3.2) complete
5. Response Equipment Testing and Deployment (Section 1.3.3) complete
6. Facility Response Team (Section 1.3.4) partial
7. Evacuation Plan (Section 1.3.5) condensed
8. Immediate Actions (Section 1.7.1) complete
9. Facility Diagram (Section 1.9) complete

1.2 Facility Information

The facility information form is designed to provide an overview of the site and a description of past activities at the facility. Much of the information required by this section may be obtained from the facility's existing SPCC Plan.

1.2.1 Facility name and location: Enter facility name and street address. Enter the address of corporate headquarters only if corporate headquarters are physically located at the facility. Include city, county, state, zip code, and phone number.

1.2.2 Latitude and Longitude: Enter the latitude and longitude of the facility. Include degrees, minutes, and seconds of the main entrance of the facility.
1.2.3 **Wellhead Protection Area:** Indicate if the facility is located in or drains into a wellhead protection area as defined by the Safe Drinking Water Act of 1986 (SDWA). The response plan requirements in the Wellhead Protection Program are outlined by the State or Territory in which the facility resides.

Footnote(s):

1. A wellhead protection area is defined as the surface and subsurface area surrounding a water well or wellfield, supplying a public water system, through which contaminants are reasonably likely to move toward and reach such water well or wellfield. For further information regarding State and territory protection programs, facility owners or operators may contact the SDWA Hotline at 1-800-426-4791.

1.2.4 **Owner/operator:** Write the name of the company or person operating the facility and the name of the person or company that owns the facility, if the two are different. List the address of the owner, if the two are different.

1.2.5 **Qualified Individual:** Write the name of the qualified individual for the entire facility. If more than one person is listed, each individual indicated in this section shall have full authority to implement the facility response plan. For each individual, list: name, position, home and work addresses (street addresses, not P.O. boxes), emergency phone number, and specific response training experience.

1.2.6 **Date of Oil Storage Start-up:** Enter the year which the present facility first started storing oil.

1.2.7 **Current Operation:** Briefly describe the facility's operations and include the North American Industrial Classification System (NAICS) code.

1.2.8 **Dates and Type of Substantial Expansion:** Include information on expansions that have occurred at the facility. Examples of such expansions include, but are not limited to: Throughput expansion, addition of a product line, change of a product line, and installation of additional oil storage capacity. The data provided shall include all facility historical information and detail the expansion of the facility. An example of substantial expansion is any material alteration of the facility which causes the owner or operator of the facility to re-evaluate and increase the response equipment necessary to adequately respond to a worst case discharge from the facility.

**Date of Last Update: **

Facility Information Form

Facility Name:

Location (Street Address):

City: ___ State: ___ Zip: ___

County: ___ Phone Number: (___) ___

Latitude: ___ Degrees ___ Minutes ___ Seconds

Longitude: ___ Degrees ___ Minutes ___ Seconds

Wellhead Protection Area:

Owner:

Owner Location (Street Address):

(if different from Facility Address)

City: ___ State: ___ Zip: ___

County: ___ Phone Number: (___) ___

Operator (if not Owner):

Qualified Individual(s): (attach additional sheets if more than one)

Name:

Position:

Work Address:

Home Address:

Emergency Phone Number: (___)

Date of Oil Storage Start-up:

Current Operations:

Date(s) and Type(s) of Substantial Expansion(s):

(Attach additional sheets if necessary)

1.3 **Emergency Response Information**

(A) The information provided in this section shall describe what will be needed in an actual emergency involving the discharge of oil or a combination of hazardous substances and oil discharge. The Emergency Response Information section of the plan must include the following components:

(1) The information provided in the Emergency Notification Phone List in section 1.3.1 identifies and prioritizes the names and phone numbers of the organizations and personnel that need to be notified immediately in the event of an emergency. This section shall include all the appropriate phone numbers for the facility. These numbers must be verified each time the plan is updated. The contact list must be accessible to all facility employees to ensure that, in case of a discharge, any employee on site could immediately notify the appropriate parties.

(2) The Spill Response Notification Form in section 1.3.1 creates a checklist of information that shall be provided to the National Response Center (NRC) and
other response personnel. All information on this checklist must be known at the time of notification, or be in the process of being collected. This notification form is based on a similar form used by the NRC. Note: Do not delay spill notification to collect the information on the list.

(3) Section 1.3.2 provides a description of the facility's list of emergency response equipment and location of the response equipment. When appropriate, the amount of oil that emergency response equipment can handle and any limitations (e.g., launching sites) must be described.

(4) Section 1.3.3 provides information regarding response equipment tests and deployment drills. Response equipment deployment exercises shall be conducted to ensure that response equipment is operational and the personnel who would operate the equipment in a spill response are capable of deploying and operating it. Only a representative sample of each type of response equipment needs to be deployed and operated, as long as the remainder is properly maintained. If appropriate, testing of response equipment may be conducted while it is being deployed. Facilities without facility-owned response equipment must ensure that the oil spill removal organization that is identified in the response plan to provide this response equipment certifies that the deployment exercises have been met. Refer to the National Preparedness for Response Exercise Program (PREP) Guidelines (see appendix E to this part, section 13, for availability), which satisfy Oil Pollution Act (OPA) response exercise requirements.

(5) Section 1.3.4 lists the facility response personnel, including those employed by the facility and those under contract to the facility for response activities, the amount of time needed for personnel to respond, their responsibility in the case of an emergency, and their level of response training. Three different forms are included in this section. The Emergency Response Personnel List shall be composed of all personnel employed by the facility whose duties involve responding to emergencies, including oil discharges, even when they are not physically present at the site. An example of this type of person would be the Building Engineer-in-Charge or Plant Fire Chief. The second form is a list of the Emergency Response Contractors (both primary and secondary) retained by the facility. Any changes in contractor status must be reflected in updates to the response plan. Evidence of contracts with response contractors shall be included in this section so that the availability of resources can be verified. The last form is the Facility Response Team List, which shall be composed of both emergency response personnel (referenced by job title/position) and emergency response contractors, included in one of the two lists described above, that will respond immediately upon discovery of an oil discharge or other emergency (i.e., the first people to respond). These are to be persons normally on the facility premises or primary response contractors. Examples of these personnel would be the Facility Hazardous Materials (HAZMAT) Spill Team 1, Facility Fire Engine Company 1, Production Supervisor, or Transfer Supervisor. Company personnel must be able to respond immediately and adequately if contractor support is not available.

(6) Section 1.3.5 lists factors that must, as appropriate, be considered when preparing an evacuation plan.

(7) Section 1.3.6 references the responsibilities of the qualified individual for the facility in the event of an emergency.

(B) The information provided in the emergency response section will aid in the assessment of the facility's ability to respond to a worst case discharge and will identify additional assistance that may be needed. In addition, the facility owner or operator may want to produce a wallet-size card containing a checklist of the immediate response and notification steps to be taken in the event of an oil discharge.

1.3.1 Notification

Date of Last Update: [Redacted]

Emergency Notification Phone List Whom To Notify

Reporter's Name: [Redacted]

Date: [Redacted]

Facility Name: [Redacted]

Owner Name: [Redacted]

Facility Identification Number: [Redacted]

Date and Time of Each NRC Notification:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Phone No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. National Response Center (NRC):</td>
<td>1-800-424-8802</td>
</tr>
<tr>
<td>2. Qualified Individual:</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Evening Phone:</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>3. Company Response Team:</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Even Phone:</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>4. Federal On-Scene Coordinator (OSC) and/or Regional Response Center (RRC):</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Evening Phone(s):</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Pager Number(s):</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>5. Local Response Team (Fire Dept./Cooperatives):</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>6. Fire Marshall:</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Evening Phone:</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>7. State Emergency Response Commission (SERC):</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Evening Phone:</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>8. State Police:</td>
<td>[Redacted]</td>
</tr>
</tbody>
</table>

9. Local Emergency Planning Committee (LEPC):

10. Local Water Supply System:
 Evening Phone:

11. Weather Report:

12. Local Television/Radio Station for Evacuation Notification:

13. Hospitals:

Spill Response Notification Form

Reporter's Last Name:
First:
M.I.:
Position:
Phone Numbers:
Day ()-
Evening ()-
Company:
Organization Type:
Address:
City:
State:
Zip:
Were Materials Discharged? (Y/N) Confidential? (Y/N)
Meeting Federal Obligations to Report? (Y/N) Date Called: ___
Calling for Responsible Party? (Y/N) Time Called: ___

Incident Description

Source and/or Cause of Incident:
Date of Incident:
Time of Incident: ___ AM/PM
Incident Address/Location:
Nearest City: ___ State: ___ County: ___ Zip: ___
Distance from City: ___ Units of Measure: ___ Direction from City: ___
Section: ___ Township: ___ Range: ___ Borough: ___
Container Type: ___ Tank Oil Storage Capacity: ___ Units of Measure: ___
Facility Oil Storage Capacity: ___ Units of Measure: ___
Facility Latitude: ___ Degrees ___ Minutes ___ Seconds
Facility Longitude: ___ Degrees ___ Minutes ___ Seconds

Material

<table>
<thead>
<tr>
<th>CHRIS Code</th>
<th>Discharged quantity</th>
<th>Unit of measure</th>
<th>Material Discharged in water</th>
<th>Quantity</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response Action

Actions Taken to Correct, Control or Mitigate Incident:

Impact

Number of Injuries: ___ Number of Deaths: ___
Were there Evacuations? ___ (Y/N) Number Evacuated: ___
Was there any Damage? ___ (Y/N)
Damage in Dollars (approximate):
Medium Affected:
Description:
More Information about Medium:

Additional Information

Any information about the incident not recorded elsewhere in the report:

Caller Notifications

EPA? ___ (Y/N) USCG? ___ (Y/N) State? ___ (Y/N)
Other? ___ (Y/N) Describe: ______

1.3.2 Response Equipment List

Date of Last Update: ___

Facility Response Equipment List

1. Skimmers/Pumps—Operational Status:
 Type, Model, and Year:
 Type Model Year
 Number:
 Capacity: ___ gal./min.
 Daily Effective Recovery Rate:
 Storage Location(s):
 Date Fuel Last Changed:
2. Boom—Operational Status:
 Type, Model, and Year:
 Type Model Year
 Number:
 Size (length): ____ ft.
 Containment Area: ____ sq. ft.
 Storage Location:

3. Chemicals Stored (Dispersants listed on EPA’s NCP Product Schedule)

<table>
<thead>
<tr>
<th>Type</th>
<th>Amount</th>
<th>Date Purchased</th>
<th>Treatment Capacity</th>
<th>Storage Location</th>
</tr>
</thead>
</table>

Were appropriate procedures used to receive approval for use of dispersants in accordance with the NCP (40 CFR 300.910) and the Area Contingency Plan (ACP), where applicable? ___ (Y/N).
Name and State of On-Scene Coordinator (OSC) authorizing use: ___.
Date Authorized: ___.

4. Dispersant Dispensing Equipment—Operational Status:

<table>
<thead>
<tr>
<th>Type and Year</th>
<th>Capacity</th>
<th>Storage Location</th>
<th>Response Time (minutes)</th>
</tr>
</thead>
</table>
5. Sorbents—Operational Status:
 Type and Year Purchased:
 Amount:
 Absorption Capacity (gal.):
 Storage Location(s):

6. Hand Tools—Operational Status:

<table>
<thead>
<tr>
<th>Type and year</th>
<th>Quantity</th>
<th>Storage location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Communication Equipment (include operating frequency and channel and/or cellular phone numbers)—Operational Status: ___

<table>
<thead>
<tr>
<th>Type and year</th>
<th>Quantity</th>
<th>Storage location/number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Fire Fighting and Personnel Protective Equipment—Operational Status: ___

<table>
<thead>
<tr>
<th>Type and year</th>
<th>Quantity</th>
<th>Storage location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Other (e.g., Heavy Equipment, Boats and Motors)—Operational Status: ___

<table>
<thead>
<tr>
<th>Type and year</th>
<th>Quantity</th>
<th>Storage location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3.3 Response Equipment Testing/Deployment

Date of Last Update:___

Response Equipment Testing and Deployment Drill Log

Last Inspection or Response Equipment Test Date:
Inspection Frequency:
Last Deployment Drill Date:
Deployment Frequency:
Oil Spill Removal Organization Certification (if applicable):

1.3.4 Personnel

Date of Last Update:___

Emergency Response Personnel

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Response time</th>
<th>Responsibility during response action</th>
<th>Response training type/date</th>
</tr>
</thead>
</table>
1. Phone number to be used when person is not on-site.

Emergency Response Contractors

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Phone</th>
<th>Response time</th>
<th>Contract responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Include evidence of contracts/agreements with response contractors to ensure the availability of personnel and response equipment.

Facility Response Team

<table>
<thead>
<tr>
<th>Team member</th>
<th>Response time (minutes)</th>
<th>Phone or pager number (day/evening)</th>
</tr>
</thead>
</table>

Qualified Individual:
Note: If the facility uses contracted help in an emergency response situation, the owner or operator must provide the contractors' names and review the contractors' capacities to provide adequate personnel and response equipment.

1.3.5 Evacuation Plans

1.3.5.1 Based on the analysis of the facility, as discussed elsewhere in the plan, a facility-wide evacuation plan shall be developed. In addition, plans to evacuate parts of the facility that are at a high risk of exposure in the event of a discharge or other release must be developed. Evacuation routes must be shown on a diagram of the facility (see section 1.9 of this appendix). When developing evacuation plans, consideration must be given to the following factors, as appropriate:

1. Location of stored materials;
2. Hazard imposed by discharged material;
3. Discharge flow direction;
4. Prevailing wind direction and speed;
5. Water currents, tides, or wave conditions (if applicable);
6. Arrival route of emergency response personnel and response equipment;
7. Evacuation routes;
8. Alternative routes of evacuation;
9. Transportation of injured personnel to nearest emergency medical facility;
10. Location of alarm/notification systems;
11. The need for a centralized check-in area for evacuation validation (roll call);
12. Selection of a mitigation command center; and
13. Location of shelter at the facility as an alternative to evacuation.

1.3.5.2 One resource that may be helpful to owners or operators in preparing this section of the response plan is The *Handbook of Chemical Hazard Analysis Procedures* by the Federal Emergency Management Agency (FEMA), Department of Transportation (DOT), and EPA. The *Handbook of Chemical Hazard Analysis Procedures* is available from: FEMA, Publication Office, 500 C. Street, S.W., Washington, DC 20472, (202) 646-3484.

1.3.5.3 As specified in §112.20(h)(1)(vi), the facility owner or operator must reference existing community evacuation plans, as appropriate.

1.3.6 Qualified Individual's Duties

The duties of the designated qualified individual are specified in §112.20(h)(3)(ix). The qualified individual's duties must be described and be consistent with the minimum requirements in §112.20(h)(3)(ix). In addition, the qualified individual must be identified with the Facility Information in section 1.2 of the response plan.

1.4 Hazard Evaluation

This section requires the facility owner or operator to examine the facility's operations closely and to predict where discharges could occur. Hazard evaluation is a widely used industry practice that allows facility owners or operators to develop a complete understanding of potential hazards and the response actions necessary to address these hazards. *The Handbook of Chemical Hazard Analysis Procedures*, prepared by the EPA, DOT, and the FEMA and the *Hazardous Materials Emergency Planning Guide* (NRT-1), prepared by the National Response Team are good references for conducting a hazard analysis. Hazard identification and evaluation will assist facility owners or operators in planning for potential discharges, thereby reducing the severity of discharge impacts that may occur in the future. The evaluation also may help the operator identify and correct potential sources of discharges. In addition, special hazards to workers and emergency response personnel's health and safety shall be evaluated, as well as the facility's oil spill history.

1.4.1 Hazard Identification

The Tank and Surface Impoundment (SI) forms, or their equivalent, that are part of this section must be completed according to the directions below. (“Surface Impoundment” means a facility or part of a facility which is a natural topographic depression, man-made excavation, or diked area formed...
primarily of earthen materials (although it may be lined with man-made materials), which is designed to hold an accumulation of liquid wastes or wastes containing free liquids, and which is not an injection well or a seepage facility. Similar worksheets, or their equivalent, must be developed for any other type of storage containers.

(1) List each tank at the facility with a separate and distinct identifier. Begin aboveground tank identifiers with an “A” and belowground tank identifiers with a “B”, or submit multiple sheets with the aboveground tanks and belowground tanks on separate sheets.

(2) Use gallons for the maximum capacity of a tank; and use square feet for the area.

(3) Using the appropriate identifiers and the following instructions, fill in the appropriate forms:

(a) Tank or SI number—Using the aforementioned identifiers (A or B) or multiple reporting sheets, identify each tank or SI at the facility that stores oil or hazardous materials.

(b) Substance Stored—For each tank or SI identified, record the material that is stored therein. If the tank or SI is used to store more than one material, list all of the stored materials.

(c) Quantity Stored—For each material stored in each tank or SI, report the average volume of material stored on any given day.

(d) Tank Type or Surface Area/Year—For each tank, report the type of tank (e.g., floating top), and the year the tank was originally installed. If the tank has been refabricated, the year that the latest refabrication was completed must be recorded in parentheses next to the year installed. For each SI, record the surface area of the impoundment and the year it went into service.

(e) Maximum Capacity—Record the operational maximum capacity for each tank and SI. If the maximum capacity varies with the season, record the upper and lower limits.

(f) Failure/Cause—Record the cause and date of any tank or SI failure which has resulted in a loss of tank or SI contents.

(4) Using the numbers from the tank and SI forms, label a schematic drawing of the facility. This drawing shall be identical to any schematic drawings included in the SPCC Plan.

(5) Using knowledge of the facility and its operations, describe the following in writing:

(a) The loading and unloading of transportation vehicles that risk the discharge of oil or release of hazardous substances during transport processes. These operations may include loading and unloading of trucks, railroad cars, or vessels. Estimate the volume of material involved in transfer operations, if the exact volume cannot be determined.

(b) Day-to-day operations that may present a risk of discharging oil or releasing a hazardous substance. These activities include scheduled venting, piping repair or replacement, valve maintenance, transfer of tank contents from one tank to another, etc. (not including transportation-related activities). Estimate the volume of material involved in these operations, if the exact volume cannot be determined.

(c) The secondary containment volume associated with each tank and/or transfer point at the facility. The numbering scheme developed on the tables, or an equivalent system, must be used to identify each containment area. Capacities must be listed for each individual unit (tanks, slumps, drainage traps, and ponds), as well as the facility total.

(d) Normal daily throughput for the facility and any effect on potential discharge volumes that a negative or positive change in that throughput may cause.

Hazard Identification Tanks

<table>
<thead>
<tr>
<th>Tank No.</th>
<th>Substance Stored (Oil and Hazardous Substance)</th>
<th>Quantity Stored (gallons)</th>
<th>Tank Type/Year</th>
<th>Maximum Capacity (gallons)</th>
<th>Failure/Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Tank = any container that stores oil.

Attach as many sheets as necessary.

Hazard Identification Surface Impoundments (SIs)

<table>
<thead>
<tr>
<th>Substance Stored (Oil and Hazardous Substance)</th>
<th>Quantity Stored (gallons)</th>
<th>Tank Type/Year</th>
<th>Maximum Capacity (gallons)</th>
<th>Failure/Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of Last Update: ___
1.4.2 Vulnerability Analysis

The vulnerability analysis shall address the potential effects (i.e., to human health, property, or the environment) of an oil discharge. Attachment C-III to Appendix C to this part provides a method that owners or operators shall use to determine appropriate distances from the facility to fish and wildlife and sensitive environments. Owners or operators can use a comparable formula that is considered acceptable by the RA. If a comparable formula is used, documentation of the reliability and analytical soundness of the formula must be attached to the response plan cover sheet. This analysis must be prepared for each facility and, as appropriate, must discuss the vulnerability of:

1. Water intakes (drinking, cooling, or other);
2. Schools;
3. Medical facilities;
4. Residential areas;
5. Businesses;
6. Wetlands or other sensitive environments;²
7. Fish and wildlife;
8. Lakes and streams;
9. Endangered flora and fauna;
10. Recreational areas;
11. Transportation routes (air, land, and water);
12. Utilities; and
13. Other areas of economic importance (e.g., beaches, marinas) including terrestrially sensitive environments, aquatic environments, and unique habitats.

Footnote(s):
² Refer to the DOC/NOAA “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (See appendix E to this part, section 13, for availability).

1.4.3 Analysis of the Potential for an Oil Discharge

Each owner or operator shall analyze the probability of a discharge occurring at the facility. This analysis shall incorporate factors such as oil discharge history, horizontal range of a potential discharge, and vulnerability to natural disaster, and shall, as appropriate, incorporate other factors such as tank age. This analysis will provide information for developing discharge scenarios for a worst case discharge and small and medium discharges and aid in the development of techniques to reduce the size and frequency of discharges. The owner or operator may need to research the age of the tanks the oil discharge history at the facility.

1.4.4 Facility Reportable Oil Spill History

Briefly describe the facility's reportable oil spill³ history for the entire life of the facility to the extent that such information is reasonably identifiable, including:

<table>
<thead>
<tr>
<th>SI No.</th>
<th>Substance Stored</th>
<th>Quantity Stored (gallons)</th>
<th>Surface Area/Year</th>
<th>Maximum Capacity (gallons)</th>
<th>Failure/Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attach as many sheets as necessary.
Footnote(s):

3 As described in 40 CFR part 110, reportable oil spills are those that: (a) violate applicable water quality standards, or (b) cause a film or sheen upon or discoloration of the surface of the water or adjoining shorelines or cause a sludge or emulsion to be deposited beneath the surface of the water or upon adjoining shorelines.

(1) Date of discharge(s);
(2) List of discharge causes;
(3) Material(s) discharged;
(4) Amount discharged in gallons;
(5) Amount of discharge that reached navigable waters, if applicable;
(6) Effectiveness and capacity of secondary containment;
(7) Clean-up actions taken;
(8) Steps taken to reduce possibility of recurrence;
(9) Total oil storage capacity of the tank(s) or impoundment(s) from which the material discharged;
(10) Enforcement actions;
(11) Effectiveness of monitoring equipment; and
(12) Description(s) of how each oil discharge was detected.

The information solicited in this section may be similar to requirements in 40 CFR 112.4(a). Any duplicate information required by § 112.4(a) may be photocopied and inserted.

1.5 Discharge Scenarios

In this section, the owner or operator is required to provide a description of the facility's worst case discharge, as well as a small and medium discharge, as appropriate. A multi-level planning approach has been chosen because the response actions to a discharge (i.e., necessary response equipment, products, and personnel) are dependent on the magnitude of the discharge. Planning for lesser discharges is necessary because the nature of the response may be qualitatively different depending on the quantity of the discharge. The facility owner or operator shall discuss the potential direction of the discharge pathway.

1.5.1 Small and Medium Discharges

1.5.1.1 To address multi-level planning requirements, the owner or operator must consider types of facility-specific discharge scenarios that may contribute to a small or medium discharge. The scenarios shall account for all the operations that take place at the facility, including but not limited to:

(1) Loading and unloading of surface transportation;
(2) Facility maintenance;
(3) Facility piping;
(4) Pumping stations and sumps;
(5) Oil storage tanks;
(6) Vehicle refueling; and
(7) Age and condition of facility and components.

1.5.1.2 The scenarios shall also consider factors that affect the response efforts required by the facility. These include but are not limited to:

(1) Size of the discharge;
(2) Proximity to downgradient wells, waterways, and drinking water intakes;
(3) Proximity to fish and wildlife and sensitive environments;
(4) Likelihood that the discharge will travel offsite (i.e., topography, drainage);
(5) Location of the material discharged (i.e., on a concrete pad or directly on the soil);
(6) Material discharged;
(7) Weather or aquatic conditions (i.e., river flow);
(8) Available remediation equipment;
(9) Probability of a chain reaction of failures; and
(10) Direction of discharge pathway.

1.5.2 Worst Case Discharge
1.5.2.1 In this section, the owner or operator must identify the worst case discharge volume at the facility. Worksheets for production and non-production facility owners or operators to use when calculating worst case discharge are presented in appendix D to this part. When planning for the worst case discharge response, all of the aforementioned factors listed in the small and medium discharge section of the response plan shall be addressed.

1.5.2.2 For onshore storage facilities and production facilities, permanently manifolds oil storage tanks are defined as tanks that are designed, installed, and/or operated in such a manner that the multiple tanks function as one storage unit (i.e., multiple tank volumes are equalized). In this section of the response plan, owners or operators must provide evidence that oil storage tanks with common piping or piping systems are not operated as one unit. If such evidence is provided and is acceptable to the RA, the worst case discharge volume shall be based on the combined oil storage capacity of all manifolds tanks or the oil storage capacity of the largest single oil storage tank within the secondary containment area, whichever is greater. For permanently manifolds oil storage tanks that function as one storage unit, the worst case discharge shall be based on the combined oil storage capacity of all manifolds tanks or the oil storage capacity of the largest single tank within a secondary containment area, whichever is greater. For purposes of the worst case discharge calculation, permanently manifolds oil storage tanks that are separated by internal divisions for each tank are considered to be single tanks and individual manifolds tank volumes are not combined.

1.6 Discharge Detection Systems

In this section, the facility owner or operator shall provide a detailed description of the procedures and equipment used to detect discharges. A section on discharge detection by personnel and a discussion of automated discharge detection, if applicable, shall be included for both regular operations and after hours operations. In addition, the facility owner or operator shall discuss how the reliability of any automated system will be checked and how frequently the system will be inspected.

1.6.1 Discharge Detection by Personnel

In this section, facility owners or operators shall describe the procedures and personnel that will detect any discharge of oil or release of a hazardous substance. A thorough discussion of facility inspections must be included. In addition, a description of initial response actions shall be addressed. This section shall reference section 1.3.1 of the response plan for emergency response information.

1.6.2 Automated Discharge Detection

In this section, facility owners or operators must describe any automated discharge detection equipment that the facility has in place. This section shall include a discussion of overfill alarms, secondary containment sensors, etc. A discussion of the plans to verify an automated alarm and the actions to be taken once verified must also be included.

1.7 Plan Implementation

In this section, facility owners or operators must explain in detail how to implement the facility's emergency response plan by describing response actions to be carried out under the plan to ensure the safety of the facility and to mitigate or prevent discharges described in section 1.5 of the response plan. This section shall include the identification of response resources for small, medium, and worst case discharges; disposal plans; and containment and drainage planning. A list of those personnel who would be involved in the cleanup shall be identified. Procedures that the facility will use, where appropriate or necessary, to update their plan after an oil discharge event and the time frame to update the plan must be described.

1.7.1 Response Resources for Small, Medium, and Worst Case Discharges

1.7.1.1 Once the discharge scenarios have been identified in section 1.5 of the response plan, the facility owner or operator shall identify and describe implementation of the response actions. The facility owner or operator shall demonstrate accessibility to the proper response personnel and equipment to effectively respond to all of the identified discharge scenarios. The determination and demonstration of adequate response capability are presented in appendix E to this part. In addition, steps to expedite the cleanup of oil discharges must be discussed. At a minimum, the following items must be addressed:

1. Emergency plans for spill response;
2. Additional response training;
3. Additional contracted help;
4. Access to additional response equipment/experts; and
5. Ability to implement the plan including response training and practice drills.

1.7.1.2A recommended form detailing immediate actions follows.

Oil Spill Response—Immediate Actions

<table>
<thead>
<tr>
<th>1. Stop the product flow</th>
<th>Act quickly to secure pumps, close valves, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Warn personnel</td>
<td>Enforce safety and security measures.</td>
</tr>
<tr>
<td>3. Shut off ignition sources</td>
<td>Motors, electrical circuits, open flames, etc.</td>
</tr>
<tr>
<td>4. Initiate containment</td>
<td>Around the tank and/or in the water with oil boom.</td>
</tr>
<tr>
<td>5. Notify NRC</td>
<td>1-800-424-8802</td>
</tr>
<tr>
<td>6. Notify OSC</td>
<td></td>
</tr>
</tbody>
</table>
1.7.2 Disposal Plans

1.7.2.1 Facility owners or operators must describe how and where the facility intends to recover, reuse, decontaminate, or dispose of materials after a discharge has taken place. The appropriate permits required to transport or dispose of recovered materials according to local, State, and Federal requirements must be addressed. Materials that must be accounted for in the disposal plan, as appropriate, include:

1. Recovered product;
2. Contaminated soil;
3. Contaminated equipment and materials, including drums, tank parts, valves, and shovels;
4. Personnel protective equipment;
5. Decontamination solutions;
6. Adsorbents; and
7. Spent chemicals.

1.7.2.2 These plans must be prepared in accordance with Federal (e.g., the Resource Conservation and Recovery Act [RCRA]), State, and local regulations, where applicable. A copy of the disposal plans from the facility’s SPCC Plan may be inserted with this section, including any diagrams in those plans.

<table>
<thead>
<tr>
<th>Material</th>
<th>Disposal facility</th>
<th>Location</th>
<th>RCRA permit/manifest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.7.3 Containment and Drainage Planning

A proper plan to contain and control a discharge through drainage may limit the threat of harm to human health and the environment. This section shall describe how to contain and control a discharge through drainage, including:

1. The available volume of containment (use the information presented in section 1.4.1 of the response plan);
2. The route of drainage from oil storage and transfer areas;
3. The construction materials used in drainage troughs;
4. The type and number of valves and separators used in the drainage system;
5. Sump pump capacities;
6. The containment capacity of weirs and booms that might be used and their location (see section 1.3.2 of this appendix); and
7. Other cleanup materials.

In addition, a facility owner or operator must meet the inspection and monitoring requirements for drainage contained in 40 CFR part 112, subparts A through C. A copy of the containment and drainage plans that are required in 40 CFR part 112, subparts A through C may be inserted in this section, including any diagrams in those plans.

Note:
The general permit for stormwater drainage may contain additional requirements.

1.8 Self-Inspection, Drills/Exercises, and Response Training

The owner or operator must develop programs for facility response training and for drills/exercises according to the requirements of 40 CFR 112.21. Logs must be kept for facility drills/exercises, personnel response training, and spill prevention meetings. Much of the recordkeeping information required by this section is also contained in the SPCC Plan required by 40 CFR 112.3. These logs may be included in the facility response plan or kept as an annex to the facility response plan.

1.8.1 Facility Self-Inspection

Under 40 CFR 112.7(e), you must include the written procedures and records of inspections for each facility in the SPCC Plan. You must include the inspection records for each container, secondary containment, and item of response equipment at the facility. You must cross-reference the records of inspections of each container and secondary containment required by 40 CFR 112.7(e) in the facility response plan. The inspection record of response equipment is a new requirement in this plan. Facility self-inspection requires two-steps: (1) a checklist of things to inspect; and (2) a method of recording the actual inspection and
its findings. You must note the date of each inspection. You must keep facility response plan records for five years. You must keep SPCC records for three years.

1.8.1.1. Tank Inspection

The tank inspection checklist presented below has been included as guidance during inspections and monitoring. Similar requirements exist in 40 CFR part 112, subparts A through C. Duplicate information from the SPCC Plan may be photocopied and inserted in this section. The inspection checklist consists of the following items:

Tank Inspection Checklist

1. Check tanks for leaks, specifically looking for:
 A. drip marks;
 B. discoloration of tanks;
 C. puddles containing spilled or leaked material;
 D. corrosion;
 E. cracks; and
 F. localized dead vegetation.

2. Check foundation for:
 A. cracks;
 B. discoloration;
 C. puddles containing spilled or leaked material;
 D. settling;
 E. gaps between tank and foundation; and
 F. damage caused by vegetation roots.

3. Check piping for:
 A. droplets of stored material;
 B. discoloration;
 C. corrosion;
 D. bowing of pipe between supports;
 E. evidence of stored material seepage from valves or seals; and
 F. localized dead vegetation.

Tank/Surface Impoundment Inspection Log

<table>
<thead>
<tr>
<th>Inspector</th>
<th>Tank or SI#</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.8.1.2 Response Equipment Inspection

Using the Emergency Response Equipment List provided in section 1.3.2 of the response plan, describe each type of response equipment, checking for the following:

Response Equipment Checklist

1. Inventory (item and quantity);
2. Storage location;
3. Accessibility (time to access and respond);
4. Operational status/condition;
5. Actual use/testing (last test date and frequency of testing); and
6. Shelf life (present age, expected replacement date).

Please note any discrepancies between this list and the available response equipment.

Response Equipment Inspection Log

[Use section 1.3.2 of the response plan as a checklist]

<table>
<thead>
<tr>
<th>Inspector</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.8.1.3 Secondary Containment Inspection

Inspect the secondary containment (as described in sections 1.4.1 and 1.7.2 of the response plan), checking the following:

Secondary Containment Checklist
1. Dike or berm system.
 A. Level of precipitation in dike/available capacity;
 B. Operational status of drainage valves;
 C. Dike or berm permeability;
 D. Debris;
 E. Erosion;
 F. Permeability of the earthen floor of diked area; and
 G. Location/status of pipes, inlets, drainage beneath tanks, etc.
2. Secondary containment
 A. Cracks;
 B. Discoloration;
 C. Presence of spilled or leaked material (standing liquid);
 D. Corrosion; and
 E. Valve conditions.
3. Retention and drainage ponds
 A. Erosion;
 B. Available capacity;
 C. Presence of spilled or leaked material;
 D. Debris; and
 E. Stressed vegetation.

The tank inspection checklist presented below has been included as guidance during inspections and monitoring.
Similar requirements exist in 40 CFR part 112, subparts A through C. Similar requirements exist in 40 CFR 112.7(e).
Duplicate information from the SPCC Plan may be photocopied and inserted in this section.

1.8.2 Facility Drills/Exercises

(A) CWA section 311(j)(5), as amended by OPA, requires the response plan to contain a description of facility drills/exercises.
According to 40 CFR 112.21(c), the facility owner or operator shall develop a program of facility response drills/exercises, including evaluation procedures. Following the PREP guidelines (see appendix E to this part, section 13, for availability) would satisfy a facility's requirements for drills/exercises under this part. Alternately, under § 112.21(c), a facility owner or operator may develop a program that is not based on the PREP guidelines. Such a program is subject to approval by the Regional Administrator based on the description of the program provided in the response plan.

(B) The PREP Guidelines specify that the facility conduct internal and external drills/exercises. The internal exercises include:
qualified individual notification drills, spill management team tabletop exercises, equipment deployment exercises, and unannounced exercises. External exercises include Area Exercises. Credit for an Area or Facility-specific Exercise will be given to the facility for an actual response to a discharge in the area if the plan was utilized for response to the discharge and the objectives of the Exercise were met and were properly evaluated, documented, and self-certified.

(C) Section 112.20(h)(8)(ii) requires the facility owner or operator to provide a description of the drill/exercise program to be carried out under the response plan. Qualified Individual Notification Drill and Spill Management Team Tabletop Drill logs shall be provided in sections 1.8.2.1 and 1.8.2.2, respectively. These logs may be included in the facility response plan or kept as an annex to the facility response plan. See section 1.3.3 of this appendix for Equipment Deployment Drill Logs.

1.8.2.1 Qualified Individual Notification Drill Logs

Qualified Individual Notification Drill Log

Date:
Company:
Qualified Individual(s):
Emergency Scenario:
Evaluation:
Changes to be Implemented:
Time Table for Implementation:

1.8.2.2 Spill Management Team Tabletop Exercise Logs

Spill Management Team Tabletop Exercise Log

Date:
1.8.3 Response Training

Section 112.21(a) requires facility owners or operators to develop programs for facility response training. Facility owners or operators are required by § 112.20(h)(8)(iii) to provide a description of the response training program to be carried out under the response plan. A facility's training program can be based on the USCG's Training Elements for Oil Spill Response, to the extent applicable to facility operations, or another response training program acceptable to the RA. The training elements are available from the USCG Office of Response (G-MOR) at (202) 267-0518 or fax (202) 267-4085. Personnel response training logs and discharge prevention meeting logs shall be included in sections 1.8.3.1 and 1.8.3.2 of the response plan respectively. These logs may be included in the facility response plan or kept as an annex to the facility response plan.

1.8.3.1 Personnel Response Training Logs

<table>
<thead>
<tr>
<th>Name</th>
<th>Response training/date and number of hours</th>
<th>Prevention training/date and number of hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.8.3.2 Discharge Prevention Meetings Logs

Date:

Attendees:

<table>
<thead>
<tr>
<th>Subject/Issue identified</th>
<th>Required action</th>
<th>Implementation date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.9 Diagrams

The facility-specific response plan shall include the following diagrams. Additional diagrams that would aid in the development of response plan sections may also be included.

1. The Site Plan Diagram shall, as appropriate, include and identify:

 (A) the entire facility to scale;

 (B) above and below ground bulk oil storage tanks;
(C) the contents and capacities of bulk oil storage tanks;
(D) the contents and capacity of drum oil storage areas;
(E) the contents and capacities of surface impoundments;
(F) process buildings;
(G) transfer areas;
(H) secondary containment systems (location and capacity);
(I) structures where hazardous materials are stored or handled, including materials stored and capacity of storage;
(J) location of communication and emergency response equipment;
(K) location of electrical equipment which contains oil; and
(L) for complexes only, the interface(s) (i.e., valve or component) between the portion of the facility regulated by EPA and the portion(s) regulated by other Agencies. In most cases, this interface is defined as the last valve inside secondary containment before piping leaves the secondary containment area to connect to the transportation-related portion of the facility (i.e., the structure used or intended to be used to transfer oil to or from a vessel or pipeline). In the absence of secondary containment, this interface is the valve manifold adjacent to the tank nearest the transfer structure as described above. The interface may be defined differently at a specific facility if agreed to by the RA and the appropriate Federal official.

(2) The Site Drainage Plan Diagram shall, as appropriate, include:
(A) major sanitary and storm sewers, manholes, and drains;
(B) weirs and shut-off valves;
(C) surface water receiving streams;
(D) fire fighting water sources;
(E) other utilities;
(F) response personnel ingress and egress;
(G) response equipment transportation routes; and
(H) direction of discharge flow from discharge points.

(3) The Site Evacuation Plan Diagram shall, as appropriate, include:
(A) site plan diagram with evacuation route(s); and
(B) location of evacuation regrouping areas.

1.10 Security

According to 40 CFR 112.7(g) facilities are required to maintain a certain level of security, as appropriate. In this section, a description of the facility security shall be provided and include, as appropriate:

(1) emergency cut-off locations (automatic or manual valves);
(2) enclosures (e.g., fencing, etc.);
(3) guards and their duties, day and night;
(4) lighting;
(5) valve and pump locks; and
(6) pipeline connection caps.

The SPCC Plan contains similar information. Duplicate information may be photocopied and inserted in this section.

2.0 Response Plan Cover Sheet

A three-page form has been developed to be completed and submitted to the RA by owners or operators who are required to prepare and submit a facility-specific response plan. The cover sheet (Attachment F-1) must accompany the response plan to provide the Agency with basic information concerning the facility. This section will describe the Response Plan Cover Sheet and provide instructions for its completion.

2.1 General Information

Owner/Operator of Facility: Enter the name of the owner of the facility (if the owner is the operator). Enter the operator of the facility if otherwise. If the owner/operator of the facility is a corporation, enter the name of the facility's principal corporate executive. Enter as much of the name as will fit in each section.

(1) Facility Name: Enter the proper name of the facility.
(2) Facility Address: Enter the street address, city, State, and zip code.
(3) Facility Phone Number: Enter the phone number of the facility.
Enter the facility latitude and longitude in degrees, minutes, and seconds.

Enter the facility's Dun and Bradstreet number if available (this information may be obtained from public library resources).

Enter the facility's NAICS code as determined by the Office of Management and Budget (this information may be obtained from public library resources.)

Enter the capacity in GALLONS of the largest aboveground oil storage tank at the facility.

Enter the total maximum capacity in GALLONS of all aboveground oil storage tanks at the facility.

Enter the number of all aboveground oil storage tanks at the facility.

Using information from the worksheets in appendix D, enter the amount of the worst case discharge in GALLONS.

Mark the appropriate line for the nearest distance between an opportunity for discharge (i.e., oil storage tank, piping, or flowline) and a navigable water.

Using the flowchart provided in Attachment C-I to appendix C to this part, mark the appropriate answer to each question. Explanations of referenced terms can be found in Appendix C to this part. If a comparable formula to the ones described in Attachment C-III to appendix C to this part is used to calculate the planning distance, documentation of the reliability and analytical soundness of the formula must be attached to the response plan cover sheet.

Complete this block after all other questions have been answered.

3.0 Acronyms

- ACP: Area Contingency Plan
- ASTM: American Society of Testing Materials
- bbls: Barrels
- bpd: Barrels per Day
- bph: Barrels per Hour
- CHRIS: Chemical Hazards Response Information System
- CWA: Clean Water Act
- DOI: Department of Interior
- DOC: Department of Commerce
- DOT: Department of Transportation
- EPA: Environmental Protection Agency
- FEMA: Federal Emergency Management Agency
- FR: Federal Register
- gal: Gallons
- gpm: Gallons per Minute
- HAZMAT: Hazardous Materials
- LEPC: Local Emergency Planning Committee
- MMS: Minerals Management Service (part of DOI)
- NAICS: North American Industrial Classification System
- NCP: National Oil and Hazardous Substances Pollution Contingency Plan
- NOAA: National Oceanic and Atmospheric Administration (part of DOC)
- NRC: National Response Center
- NRT: National Response Team
- OPA: Oil Pollution Act of 1990
- OSC: On-Scene Coordinator
- PREP: National Preparedness for Response Exercise Program
- RA: Regional Administrator
4.0 References

U.S. DOT, FEMA and U.S. EPA. Handbook of Chemical Hazard Analysis Procedures.

Attachments to Appendix F

Attachment F-I—Response Plan Cover Sheet

This cover sheet will provide EPA with basic information concerning the facility. It must accompany a submitted facility response plan. Explanations and detailed instructions can be found in appendix F. Please type or write legibly in blue or black ink. Public reporting burden for the collection of this information is estimated to vary from 1 hour to 270 hours per response in the first year, with an average of 5 hours per response. This estimate includes time for reviewing instructions, searching existing data sources, gathering the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate of this information, including suggestions for reducing this burden to: Chief, Information Policy Branch, Mail Code: PM-2822, U.S. Environmental Protection Agency, Ariel Rios Building, 1200 Pennsylvania Avenue, NW., Washington, DC 20460; and to the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington D.C. 20503.

General Information

Owner/Operator of Facility:
Facility Name:
Facility Address (street address or route):
City, State, and U.S. Zip Code:
Facility Phone No.:
Latitude (Degrees: North):
degrees, minutes, seconds
Dun & Bradstreet Number: 1

Footnote(s):

1 These numbers may be obtained from public library resources.

Largest Aboveground Oil Storage Tank Capacity (Gallons):
Number of Aboveground Oil Storage Tanks:
Longitude (Degrees: West):
degrees, minutes, seconds

North American Industrial Classification System (NAICS) Code: 1
Maximum Oil Storage Capacity (Gallons):
Worst Case Oil Discharge Amount (Gallons):
Facility Distance to Navigable Water. Mark the appropriate line.
0-1/4 mile __ 1/4-1/2 mile __ 1/2-1 mile __ >1 mile __

Applicability of Substantial Harm Criteria

Does the facility transfer oil over-water\(^2\) to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?

Footnote(s):

\(^2\) Explanations of the above-referenced terms can be found in appendix C to this part. If a comparable formula to the ones contained in Attachment C-III is used to establish the appropriate distance to fish and wildlife and sensitive environments or public drinking water intakes, documentation of the reliability and analytical soundness of the formula must be attached to this form.

Yes

No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and, within any storage area, does the facility lack secondary containment\(^2\) that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation?

Yes

No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance\(^2\) (as calculated using the appropriate formula in appendix C or a comparable formula) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments?\(^3\)

Footnote(s):

\(^3\) For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments" (see appendix E to this part, section 13, for availability) and the applicable ACP.

Yes

No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance\(^2\) (as calculated using the appropriate formula in appendix C or a comparable formula) such that a discharge from the facility would shut down a public drinking water intake?\(^2\)

Yes

No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil spill\(^2\) in an amount greater than or equal to 10,000 gallons within the last 5 years?

Yes

No

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining information, I believe that the submitted information is true, accurate, and complete.

Signature:

Name (Please type or print):

Title:

Date:

Pt. 112, App. G

Appendix G to Part 112—Tier I Qualified Facility SPCC Plan

[Please see PDF for image: ER13NO09.000]
[Please see PDF for image: ER13NO09.022]

[Please see PDF for image: ER13NO09.023]

[74 FR 58811, Nov. 13, 2009]
Appendix B
Administrative Plan Updates
ADMINISTRATIVE UPDATES

Administrative updates to the Plan do not require certification by a registered Professional Engineer. Such certification is only required for a change that materially affects the facility’s potential for a discharge of oil. Changes in information such as names, addresses, and phone numbers do not require the certification of a Professional Engineer (refer to Section 3.5.3). When administrative updates are made to the Plan, update the table below, indicating what was changed and which pages were affected.

<table>
<thead>
<tr>
<th>Date</th>
<th>Updated by</th>
<th>Page(s) Affected</th>
<th>Reason(s) for Update(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C
Discharge Reports
JWN OIL DISCHARGE REPORT

Facility Name: John C. Tune Airport Facility Phone Number: (615) 350-5000
Facility Location: 110 Tune Airport Drive, Nashville, TN 37209 Specific Plant: JWN
Maximum Oil Storage Capacity: 45,760 gallons
Normal Daily Oil Throughput: 1,000 gallons (approx)
Facility Description: See the attached facility map. The facility consists of a single runway with facilities for airplane storage and parking.

Incident Type

Evacuation Required? ______

- Discharge to water that exceeds 1,000 gallons
- Two discharges to water that exceed 42 gallons each within 12-month period
- Discharge to water that violates applicable water quality standards
- Discharge to water that causes a sheen upon or discoloration of water surface
- Discharge to water that causes a sludge or emulsion to form beneath water surface
- Other: __

Incident Source and Location: ____________
Incident Date: ____________ Weather Conditions: ____________

Approximate Time Incident Began: ________ Discovered: ________ Ended: ________

Material Discharged: __________________________ Concentration of Discharge: ____________

Total Quantity Discharged: ________ gallons Qty. Discharged to Navigable Waters: ________ gallons

Affected Media: ____________________________
Transportation Characteristics of Media into Which Material Discharged: ____________________________

Person Possessing or Controlling Material at Time of Discharge: ____________________________
Address: ____________________________ Phone Number: ____________________________

Person Having Actual Knowledge of Facts Surrounding Discharge: ____________________________
Address: ____________________________ Phone Number: ____________________________

Person to Contact for Additional Information Concerning Discharge: ____________________________
Address: ____________________________ Phone Number: ____________________________
JWN DISCHARGE REPORT (Cont’d.)

Cause of Discharge, Including Failure Analysis: ________________________________

Efforts Taken to Control or Mitigate Discharge: ________________________________

Harmful Effects of Discharge, if Known: ______________________________________

Damages or Injuries Caused by Discharge: ________________________________

Corrective Actions and Countermeasures Taken, Including Equipment Repairs and Replacements: ______________________________________

Measures Taken or Planned to Reduce Possibility of Recurrence: ________________________________

Present or Proposed Remedial Action at Site of Discharge: ________________________________

Individuals and/or Organizations Contacted: ________________________________

Prepared by: ________________________________ Title: ________________________________

Signature: ________________________________ Date: ________________________________
Appendix D
Inspection Records
JOHN C. TUNE MONTHLY VISUAL SPCC INSPECTION RECORD

Location	**Inspect For**	**Yes**	**No**	**N/A**	**Comments / Action Taken**
Tanks:
- Three tanks at 12,000 gallons each.
- 1,000-gallon; self-service 100LL avgas tank
- 250-gallon; used oil tank
- 500-gallon; gasoline tank
- 500-gallon; diesel tank

 - Is there liquid of any kind in secondary containment dikes or annular spaces?
 - Piping, supports, joints, valves, and pumps are in good condition, free of leaks. Perform operational tests to visually spot any leak.
 - Tanks are in good condition with no significant signs of rusting, pitting, or failure on ALL sides of tank and secondary containment.
 - Is the overfill box at the used oil tank free of excess oil that could cause a spill.
 - Are there any signs of oil spills in the truck loading/unloading rack?
 - Has the oil/water separator be maintained and cleaned out properly? Is there oil sheen in the discharge during a rain event?
 - Are Best Management Practices (BMPs) being followed while loading / unloading fuel or used oil? (See SPCC Section 7.6)

Emergency Diesel Generator

 - Equipment is in good condition with no significant signs of rusting, pitting, or failure on ALL sides of tank and secondary containment.
<table>
<thead>
<tr>
<th>Location</th>
<th>Inspect For</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments / Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Refuelers</td>
<td>Are the fueling tankers both clean and in proper operating conditions, with no evidence of leaking or malfunctioning equipment?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used Oil Drums</td>
<td>Drums are in good condition with no signs of leaks. Drums are stored on containment pallets, and pallets are in good condition.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>Are adequate supplies of spill response materials and equipment readily available?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments from Inspection:

Appendix E
Personnel Training Records
JOHN C. TUNE PERSONNEL TRAINING RECORD

John C. Tune Airport
110 Tune Airport Drive
Nashville, TN 37209

<table>
<thead>
<tr>
<th>Signature</th>
<th>Printed Name</th>
<th>Area/Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topics Covered